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Many biological processes, from cellular metabolism to popula-
tion dynamics, are characterized by allometric scaling (power-
law) relationships between size and rate1±10. An outstanding
question is whether typical allometric scaling relationshipsÐ
the power-law dependence of a biological rate on body massÐcan
be understood by considering the general features of branching
networks serving a particular volume. Distributed networks in
nature stem from the need for effective connectivity11, and occur
both in biological systems such as cardiovascular and respiratory
networks1±8 and plant vascular and root systems1,9,10, and in
inanimate systems such as the drainage network of river
basins12. Here we derive a general relationship between size and
¯ow rates in arbitrary networks with local connectivity. Our
theory accounts in a general way for the quarter-power allometric
scaling of living organisms1±10, recently derived8 under speci®c
assumptions for particular network geometries. It also predicts
scaling relations applicable to all ef®cient transportation net-
works, which we verify from observational data on the river
drainage basins. Allometric scaling is therefore shown to origi-
nate from the general features of networks irrespective of dyna-
mical or geometric assumptions.

In euclidean geometry, a D-dimensional compact object, char-
acterized by a linear size L and having a constant density (indepen-
dent of L), has a volume V and a mass M that scale as LD. Thus,
simple geometrical attributes that depend on L should scale with the
mass as a function of M1/D. For example, the surface area of such
objects scales as M(D-1)/D. For three-dimensional objects (where
D � 3), one may therefore expect scaling to hold with the exponents
being related to the factor 1/3. But we will show here that, for
systems comprising transportation networks, this simple 1/D-
scaling is no longer valid.

To model the metabolic system of living organisms, we postulate
that the fundamental processes of nutrient transfer at the micro-

scopic level are independent of organism size. In a D-dimensional
organism (denoted the service region), the number of such transfer
sites scales as LD (here L is measured in units of l, the mean distance
between neighbouring sites). Each transfer site is fed with nutrients
(for example, through blood) by a central source through a network
providing a route for the transport of the nutrients to the sites. The
total amount of nutrients being delivered to the sites per unit time,
B, simply scales as the number of sites or as LD. The total blood
volume C for a given organism at any given time depends, in the
steady-state supply situation, on the structure of the transportation
network. It is proportional to the sum of individual ¯ow rates in the
links or bonds that constitute the network. We de®ne the most
ef®cient class of networks as that for which C is as small as possible.
Note that this does not coincide with the assumption made in ref. 8,
where the energy dissipation was minimized within a hierarchical
model.

Our key result is that, for networks in this ef®cient class, C scales
as L(D+1). The total blood volume increases faster than the metabolic
rate B as the characteristic size scale of the organism increases. Thus
larger organisms have a lower number of transfer sites (and hence B)
per unit blood volume. Because the organism mass scales1±3,5±7 (at
least) as C, the metabolic rate does not scale linearly with mass, but
rather scales as MD/(D+1). In the non-biological context, the number
of transfer sites is proportional to the volume of the service region,
which, in turn, leads to a novel mass±volume relationship.

We consider a single network source that services LD sites
uniformly distributed in a D-dimensional space. Each site is con-
nected to one or more of its neighbours, which results in a
transportation network that spans the system. Such a network
may be a well connected one with loops, or merely a spanning
tree, an extreme example of which is a spiral structure11 (Fig. 1a±d).
Each site X is supplied by the source at a steady rate FX, no less than a
positive value Fmin and no larger than a value Fmax�Fmax $ Fmin�, both
of which may depend on l. A simple, special case would correspond
to a uniform constant rate for all sites. We set l � 1 without loss of
generality. Such a system could represent a biological organism that
needs a steady supply of nutrients to all its parts1±8. The metabolic
rate of such a biological organism is given by B � SXFX and simply
scales as LD. Another example is the (inverse) problem of the
drainage basin of a river where the sites represent source areas, FX

is the net rainfall rate of landscape-forming events12 and the network
provides routes for transport of water and sediments.

Any transportation network must provide a route from the
source to all the LD sites and consists of interconnected links in
each of which, in steady state, the ¯ow rate does not change with
time. Each link starts or terminates at the source or a site. Let the
scalar quantity |Ib| represent the magnitude of the ¯ow on the b-th
link. The source has an outward ¯ow, whose rate exactly equals the
sum of the ¯ow rates into all the sites. At a junction of the links, a
conservation law for the net ¯ow holdsÐthe in¯ow must exactly
balance the out¯ow plus the amount supplied to the site. This
conservation law does not determine uniquely the ¯ow on each link
for an arbitrary network. The degrees of freedom in the choice of the
¯ow pattern is controlled by the number of independent loops equal
to �the number of links�2 �the number of sites� � 1. The total
quantity of nutrients in the network at any instant of time, C, is
given simply by Sb|Ib| on setting the constant of proportionality
equal to 1.

We propose the theorem that for any spanning network in D
dimensions, C scales at least as LD+1 and at most as L2D for large L.
Equivalently, the number of transfer sites or B scales at most as
CD/(D+1) and at least as C1/2. The general proof of the theorem is
presented as Supplementary Information. A simple argument is that
C is equal to the number of transfer sites (LD) multiplied by the
mean distance of the transfer sites to the source (the father away a
transfer site is from the source as measured along the network, the
larger the amount of blood that will be needed to nourish it). This
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mean distance scales at least as L and at most as LD. The latter result
holds for a network with a one-dimensional topology as in a space-
®lling spiral, whereas the former result is obtained when the
network has all links directed away from the source (or towards a
collection point or the outlet in the river basin). Indeed, C scales as
LD+1 for all directed networks (the ¯ow in all but the links of the
directed maximal network (Fig. 1b) are necessarily zero in these
cases) independent of whether they have loops or a tree-like
structure, provided Ib is non-negative on each link. Such solutions
do indeed exist and include all directed trees (Fig. 1c). These
solutions belong to the class of the most ef®cient networks in that
they lead to the smallest value of C. In such networks, B scales as CD/

(D+1). Thus, for D � 3, when quantities related to the network are
scaled with respect to C, we obtain quarter-power scaling rather
than the one-third power behaviour discussed earlier.

The application of our theorem to the problem of allometric
scaling in living organisms, which span size scales that range over
many orders of magnitude1±8, is straightforward. In spite of an
impressive array of scales and the accompanying diverse require-
ments in the resources needed for sustaining the organism, a robust
and common feature is that a variety of biological quantities
(generically denoted as Y) that are related to blood circulation
scale algebraically with the mass M of the organism. The relation is
given as Y,Ms, where s is a scaling exponent1±8. Even though the
organisms are three-dimensional, the exponent s is usually consis-
tently found to be obtained from the fraction 1/4.

West, Brown and Enquist8 have constructed a model of space-
®lling hierarchical networks of branching tubes to explain allo-
metric scaling. In our analysis, the mass M of an organism scales as
the blood volume C, so that in the simplest and most ef®cient
scenario B,M3=4, which is the central result of allometric scaling1±10.
Many of the other exponents derived in ref. 8 follow from simple
dimensional analysis, thus accounting for their robustness, whereas
others depend on detailed assumptions. The scaling exponent is
universal. Our analysis shows that the basic result does not require
any assumptions regarding the hierarchical nature of the network
nor does it necessarily demand a tree-like structure. However, the
presence of a tree would greatly shorten the total length of the
network, thereby increasing its viability and ef®ciency. Observed
differences in scaling within a species and between species1±7 could
arise from factors extrinsic to the network that limit the amount of
nutrients delivered to the sites (see Supplementary Information).

We now turn to a test of the theorem within the context of river
networks12. An elevation map of the soil heights of the rugged
landscape may be used to derive a spanning tree that de®nes unique
routes from each location within the basin to the global outlet,
where the main stream is formed. Suitably accurate data and
objective procedures to extract the network are known, and the
reliability of the observational results are well established12. Each site
X in the basin is associated with a sub-basin that drains into it. The
role of the metabolic rate for this sub-basin is taken by the total
contributing area, which is de®ned by the recursion relation
AX � SZ[nn�X�AZ � 1, where nn(X) are the nearest neighbours of X
that drain into X through appropriate steepest-descent drainage
directions. Note that the added unity is the area of the elementary
pixel, the analogue of FX. Indeed, if A is the area of the sub-basin that
drains into a given site X, the analogue of C is de®ned by SZ[gAZ
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Figure 1 Sketches of transportation networks. a, An example of a fully connected

network, de®ned as the connection pattern of links that join the sites, generically

denoted by X, characterized by different distances LX from the source O. The

node number in the drawing represents the value of LX de®ned to be the minimum

number of sites encountered among all the routes along the network from O to X.

The cross-hatched area represents the elementary service volume VX of one of

the sites. Each site X may be thought of as serving an elementary volume VX

requiring the necessary nutrient supply FX. Two sites are de®ned as neighbours if

their service volumes share a part of their boundaries of non-zero measure. The

arrows denote orientated links that are directed away from the source.b, Maximal

directed network. Only orientated links are retained from the fully connected

network. c, A directed spanning tree. Each site is connected to the source by a

single path, the shortest, belonging to the maximal network. d, A spiral pattern,

which yields limiting scaling behaviour. Note that within the assumed framework

of local connectivity, the possibility of explosion patterns11 connecting all sites

directly to the source is not admissible.
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Figure 2 Allometric scaling in river networks. Double logarithmic plot of

C ~ SX[gAX versus A for three river networks characterized by different climates,

geology and geographic locations (Dry Fork, West Virginia, 586 km2, digital terrain

map (DTM) size 30 3 30m2; Island Creek, Idaho, 260 km2, DTM size 30 3 30m2;

Tirso, Italy, 2,024 km2, DTM size 237 3 237m2). The experimental points are

obtained by binning total contributing areas, and computing the ensemble

average of the sum of the inner areas for each sub-basin within the binned

interval. The ®gure uses pixel units in which the smallest area element is

assigned a unit value. Also plotted is the predicted scaling relationship with

slope 3/2. The inset shows the raw data from the Tirso basin before any binning

has been done.
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where g is the collection of all sites connected to X through drainage
directions. The theorem predicts that, for ef®cient drainage basins, a
log±log plot of C versus A should have a slope of 3/2 because D � 2
and river networks in nature are known to be ef®cient and
directed12. Our observational data (Fig. 2) are found to agree with
the predictions over ®ve decades of scales.

Our general results should be applicable to a wide variety of
distributed networks including the ¯ow of water, blood, sewage,
food, air and electrical currents. Even though the speci®c details
vary signi®cantly, the novel behaviour built into ef®cient transpor-
tation networks provides a uni®ed framework13 underlying the
allometric scaling of diverse systems. M
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Transition-metal carbides and nitrides are hard materials widely
used for cutting tools and wear-resistant coatings. Their hardness
is not yet understood at a fundamental level. A clue may lie in the
puzzling fact that transition-metal carbonitrides that have the
rock-salt structure (such as TiCxN1-x) have the greatest hardness
for a valence-electron concentration of about 8.4 per cell1±3, which
suggests that the hardness may be determined more by the nature
of the bonding than by the conventional microstructural features
that determine the hardness of structural metals and alloys. To
investigate this possibility, we have evaluated the shear modulus
of various transition-metal carbides and nitrides using ab initio
pseudopotential calculations. Our results show that the behaviour
of these materials can be understood on a fundamental level in
terms of their electronic band structure. The unusual hardness
originates from a particular band of s bonding states between the

non-metal p orbitals and the metal d orbitals that strongly resists
shearing strain or shape change. Filling of these states is com-
pleted at a valence-electron concentration of about 8.4, and any
additional electrons would go into a higher band which is
unstable against shear deformations.

Among the various microscopic and intrinsic properties of
materials, the shear modulus provides a measure of the rigidity
against the shape deformations involved in microhardness indenta-
tion experiments. In particular, since the Peierls stresses in the
transition-metal carbonitrides are very high, the strengths of these
compounds may be in¯uenced more by the dif®culty of nucleating
and moving dislocations through the background crystal lattice
than by the dif®culty of moving dislocations through microstruc-
tural obstacles4. As the stresses required to nucleate or move isolated
dislocations scale with the shear modulus, electronic changes that
affect the shear modulus may have a pronounced effect on the
macroscopic hardness value. Several prior discussions of the
mechanical properties of hard materials have made this point4±8.
There is more than one shear modulus, but we have elected to study
c44 (rather than, say, the difference between c11 and c12 or averaged
shear modulus) which by itself represents a shape change without
volume change, and provides directly information about electronic
response to shear strain.

To understand the variation of the shear modulus c44 with com-
position, we carried out quantum-mechanical electronic-structure
calculations (under both normal and strained conditions) for
TiCxN1-x, HfCxN1-x and ZrxNb1-xC using the ab initio pseudo-
potential method9,10. In our calculations, alloy con®gurations such as
TiCxN1-x are simulated in two different ways and cross-checked. The
®rst is the virtual crystal method in which the ionic pseudopotential
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Figure 1 Correlation between the calculated shear modulus c44 and experimental

microhardness. a, Calculated shear modulus c44 in GPa for TiCxN1-x (®lled

triangles), HfCxN1-x (®lled boxes) and ZrxNb1-xC (®lled circles) as a function of the

valence electron concentration (VEC). The curves are polynomial ®ts to the

calculated c44. b, Measured microhardness of TiCxN1-x cermets from ref. 2 in Hv

units (®lled diamonds). For comparison, the calculated c44 (®lled triangles) in GPa

is plotted in the same ®gure. The thin solid line is a guide to the eye. Inset,

microhardness of bulk alloys and sub-stoichiometric compounds (Ti(CN), dotted

line; (ZrNb)C, dashed line; Hf(CN), solid line; and NbC1-x, dash-dotted line).


