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We study the satisfiability of random Boolean expressions
built from many clauses with K variables per clause (K-
satisfiability). Expressions with a ratio α of clauses to
variables less than a threshold αc are almost always
satisfiable, while those with a ratio above threshold are
almost always unsatisfiable. We show the existence of an
intermediate phase below αc, where the proliferation of
metastable states is responsible for the onset of complexity
in search algorithms. We introduce a new class of
optimization algorithms which can deal with these
metastable states; one such algorithm has been tested
successfully on the largest existing benchmark of K-
satisfiability.

The K-satisfiability problem (Ksat) asks whether one can
satisfy simultaneously a set of M constraints between N
Boolean variables, where each constraint is a clause built as
the logical OR involving K variables (or their negations).
Ksat is at the core of combinatorial optimization theory (1),
and often serves as a benchmark to search algorithm in
artificial intelligence and computer science. An efficient
algorithm for solving Ksat for K ≥ 3 would immediately lead
to other algorithms for solving efficiently thousands of
different hard combinatorial problems. The class of
combinatorial problems sharing such a crucial feature is
called NP-complete (2) and it is a basic conjecture of modern
computer science that no such efficient algorithm exists.
However, on the more practical side, algorithms which are
used to solve real-world NP-complete problems display a
huge variability of running times, ranging from linear to
exponential. A theory for the typical-case behaviour of
algorithms, on classes of random instances chosen from a
given probability distribution, is therefore the natural
complement to the worst-case analysis (3–5). While 1sat and
2sat are solved efficiently by polynomial time algorithms (6),
K > 2 randomly generated Boolean formulae may become
extraordinarily difficult to solve: it has been observed
numerically (7, 8) that computationally hard random
instances are generated when the problems are critically
constrained, i.e. close to the SAT/UNSAT phase boundary.
The study of critical instances represents a theoretical

challenge towards an understanding of the onset of
computational complexity and the analysis of algorithms.
Moreover, such hard instances are a popular test-bed for the
performance of search algorithms (9).

The random Ksat problem has close similarities with
models of complex materials such as spin glasses which are
fundamental systems in the statistical physics of disordered
systems (10). Spin glasses deal with binary variables ('spins'),
interacting with random exchange couplings. Each pair of
interacting spins can be seen as a constraint, and finding the
state of minimal energy in a spin glass amounts to minimizing
the number of violated constraints. Although the precise form
of the constraints in spin glasses and Ksat differ, in both cases
the difficulty comes from the possible existence of
'frustration' (11) which makes it difficult to find the global
optimal state by a purely local optimization procedure. Links
between combinatorial optimization and statistical physics
have been known for long (10, 12, 13). Techniques taken
from statistical physics are particularly useful in the case in
which the size of the instance is large.

Two main categories of questions can be addressed. One
type is algorithmic, e.g. finding an algorithm that decides
whether an instance is SAT or UNSAT (or that tries to
minimize the number of violated constraints). Another one is
more theoretical and deals with random instances, for which
one wants to predict the typical behaviour, e.g. phase
transitions and structure of the solution space.

We address the two types of questions in the 3sat problem.
When the number of variables N and of clauses M both
increase at a fixed value of α = M/N, random Ksat problems
become generically SAT at small α, and generically UNSAT
at large α. The existence of a SAT-UNSAT phase transition
in the infinite N limit has been established rigorously for any
K (14), but the critical value αc (that separates the two
phases) has been found only in the (polynomial) K = 2
problem where αc = 1 (15–17). For the NP-complete case K ≥
3, much less is known. The present best numerical estimate
for αc at K = 3 is 4.26 (18), and the rigorous bounds are(19,
20) 3.42 < αc < 4.506 , while previous statistical mechanics
analysis using the replica method, has found αc(3) ∼ 4.48 (21)
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and αc(3) ∼ 4.396 (22) in the framework of variational
approximations. The SAT-UNSAT decision problem is also
known experimentally to be algorithmically harder to solve in
the neighborhood of αc depending on the characteristics of
the SAT/UNSAT phase transition. Indeed 2sat and 3sat are
different in this respect (23).

Setting out the statistical physics problem. The Ksat
problem deals with N Boolean variables xi, i ∈ {1,..., N} .
Each clause a ∈ {1,..., M} involves K variables {xi1(a),...,
xiK(a)} . Each such variable can be negated or not, and the
clause is built as the OR function of the K resulting variables.
In physical terms, the variable xi can be represented by a ’spin’
si = ±1 through the one-to-one mapping si = −1 (respectively
+1) if xi is false (resp. true). For each variable xir(a) appearing
in clause a, one introduces a ’coupling’ Ja

r = −1 if the variable
appears negated in the clause, otherwise the coupling is Ja

r =
1. The set of indices i1(a),..., iK(a) and of ’couplings’ Ja = {
Ja

1,..., Ja
K} define an instance of the problem under study.

Given a spin configuration, the ’energy’ εJa(si1(a),...,sik(a)) of

clause a is taken equal to 0 if the clause is satisfied, equal to 1
if it is violated (24). The total energy E equals the number of
violated clauses.

In statistical physics one assigns to each of the 2N spin
configurations a Boltzmann probability exp(−βE)/Z where β
is an auxiliary parameter playing the role of the inverse of
temperature and Z is a normalization term; here we shall be
interested in the β→ ∞ ’zero temperature’ limit, where
Boltzmann’s law selects optimal states.

The spin glass approach. We first study the large N limit
of the random 3sat problem, where the indices in each clause
are chosen randomly, as well as the sign of each coupling,
with uniform distributions. Our approach to these problems
uses a general strategy initiated years ago in spin glass theory
(10). The first concept we need to introduce is that of a state.
Roughly speaking states correspond to connected regions of
configurations, such that one must cross energy-barriers that
diverge when N→ ∞ in order to go from one state to another.
The archetype of such a situation is the ferromagnetic
transition where the spins collectively polarize, either towards
an ’up’ state or towards a ’down’ state. In frustrated systems
such as satisfiability problems there can exist many states: the
number of states with energy E behaves as exp(N Σ(e)),
where e ≡ E/N and the function Σ(e), called the complexity, is
a crucial concept in the studies of structural glasses. The
ground state energy density e can be found by the condition
Σ(e) = 0. Here we choose a restricted zero temperature
definition which applies to random Ksat: a state is simply a
cluster of configurations of equal energy related by single
spin flip moves, such that the energy cannot be decreased by
any sequence of single spin flips (25). Generalizing the
approach of (26), one can develop a whole ’zero temperature

thermodynamics’ of the states by introducing a ’free energy’
function Φ(y) defined from:

(1)
The reweighting y is a Lagrange parameter (similar to an
inverse temperature) which allows to fix the energy of the
states. Larger reweighting selects states of lower energies,
until one reaches y = y* corresponding to the lowest energy
states (y* = ∞ in the SAT region).

The cavity method: message passing procedures. To
compute Φ(y), we use the zero temperature cavity method
(27), in which the basic ingredients are the cavity-fields and
the cavity-biases, which are defined in each state. The cavity-
field hi→a measures the tendency of spin i to be up, when one
of the clauses, a, to which i belongs, has been disconnected
(Fig. 1). It is equal to the sum of cavity-biases ub→i, sent to
site i from all the other clauses b to which it belongs. In
computer science terminology, cavity-fields are messages
sent from a variable node to a function node, while cavity-
biases are messages sent from a function node to a variable
node (28). The cavity-biases are determined by a local
optimization procedure. Consider one clause a, involving K
variables s1,...sK, and a penalty function εJ(s1,..,sK). The
optimization on the variables s2,..,sK

(2)
defines the mean energy shift aJ and the cavity-bias ua→1 =
uJ(h2,..,hK) propagated from this clause to the variable s1 (29).

The advantage of cavity-biases and cavity-fields in large
(N >> 1) random Ksat and spin glass problems is the special
structure of the interaction graph: It is locally tree-like, the
connectivity fluctuates from site to site with a Poisson
distribution of mean Kα (see Fig. 1). On a more global scale
these random graphs have loops with a typical length growing
as log(N). As the cavity fields h2,..,hK are defined in the
absence of the clause, they correspond to far away variables
(with a distance of order log(N)). The ’clustering property’,
valid inside each state, implies that their correlations go to
zero at large N (on a real tree they would be fully
uncorrelated). The topology of the graph implies that the
cavity equations are exact on finite subgraphs.

In order to determine the statistical properties of the set of
cavity-biases and how they change from state to state, we
introduce the ’surveys’ which are histograms of cavity-biases.
For each state ω, there is one cavity-bias uω

a→1 propagated
from one clause a to site 1, it can be computed from Eq. 2
where the cavity-fields are those corresponding to the state ω.
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For a given value of the reweighting, the survey propagated
to spin s1 in Fig. 1 is defined as: Q(y)

a→1(u) = C ∑ω δ(u
− uω

a→1) where C is a normalization constant insuring that
Q(y)

a→1(u) is a probability distribution, and the sum over ω is
restricted to the states having the energy density e selected by
the reweighting y.
The survey propagation rules on the graph of Fig. 1 take the
precise form:

(3)

where W = w1+...+wq, V = v1+...+vq′, and C′ is a normalisation
constant. The exponential term in Eq.3 takes care of the
energy level crossings induced by the propagation. Once the
surveys are known, the free energy Φ(y) can be computed
using the formulae of (27), and the complexity can be
deduced from Eq.1. The order parameter of the theory is the
collection of the surveys.

Phase diagram. In the zero temperature 3sat problem, one
sees from the definition (2) that a given cavity-bias ua →i

takes, either the values {0,1} (if the variable xi appears
unnegated in clause a), or the values {0,−1}. The
corresponding survey Q(y)

a→i(u) is thus characterized by a
single number, the probability that u = 0. Using this
simplification, we have been able to compute (30) the
statistical distribution of surveys in random graphs in the
infinite volume limit. We find two critical values of α at
αd ∼ 3.921 and αc ∼ 4.256. For α < αd, the solution is of a
paramagnetic type (all the surveys equal δ(u)), a generic
instance is satisfiable, and the solution can be found even by a
simple zero temperature Metropolis algorithm (ZTMA) (31).
For αd < α < αc, the space of configurations breaks up into
many states, and there exists a non trivial complexity (32).
Some of the states have zero energy, therefore we are still in
the SAT phase. It can be argued that algorithms like ZTMA
will generically get trapped into the most numerous states,
which have an extensive (proportional to N) energy Eth.

At α = 4.2 we find analytically Eth ∼ .003N, and we have
checked that ZTMA converges to a similar value of energy.
The fact that eth = Eth/N is small explains the good
performance of smarter algorithms on instances involving a
few thousand variables. At α > αc, the system is in its
UNSAT phase, the lowest possible energy is positive. The
phase diagram is summarized in Fig. 2.

Survey propagation algorithm. We now consider one
given instance (30), i.e. one fixed large graph. We have seen
experimentally that in the glassy region α > αd, the standard

(y = 0) iteration of cavity-biases either ceases to converge or
it converges to the trivial paramagnetic solution where all
ua→i = 0. If i is the r-th site connected to the function node a,
we introduce a survey Q(y)

a→i(u) = ηa →iδ(u) + (1 − ηa →i)δ(u +
Ja

r) which is characterized by the single number ηa→i. The
survey propagation of Eq. 3 performed with random
sequential updating is a message passing procedure which
defines a dynamical process in the space of the K N variables

ηa →i. We have implemented it on large random instances in
the hard part of the SAT phase, with α ∼ 4.2−4.25, using
sufficiently large value of y (typically y ∼ 4−6). The process
is found to converge to a unique non-trivial solution. We
expect that this survey propagation technique can be of
interest in many problems of statistical inference.

The set of all surveys Q(y)
a→i(u) found after convergence

provides a nontrivial information on the structure of the
states. From all the surveys sent onto one site i , we
reconstruct through a reweighted convolution (33) the
probability distribution of local fields on this site, Pi(H). This
is a distribution on integers (Pi(H) = ∑rδ(H − r)wi

r). The total
weight wi

+ = ∑∞
r=1 (resp.wi

− = ∑−1
r = −∞ ) of Pi(H) on positive

(resp. negative) integers gives the fraction of zero energy
states where si is equal to 1 (resp. to −1). We have checked
numerically on single instances with N = 10000, that these
fractions predicted from survey propagation agree with those
obtained by averaging on a few hundreds of ground states.

A decimation algorithm. This information can be
exploited in order to invent new types of algorithms (30), or
improve existing ones. We have worked out one such
application, the survey inspired decimation (SID), which
shows very promising performance, but probably other
algorithms could be found using the same type of
information. Given an instance, we first compute all the
surveys by the survey propagation algorithm with a
sufficiently large value of y (e.g. y = 6). Then we deduce the
distribution of local fields, and in particular their weights wi

±

on positive and negative integers. We then fix the variable i
with largest |wi

+ − wi
−| to the value si = Sign(wi

+ − wi
−).

Satisfied clauses are eliminated, unsatisfied K-clauses
involving i are transformed into K−1 clauses, leading to a
new instance with a reduced number of variables, and of
clauses. The surveys can be propagated again on this new
instance (starting from the previous ones) until convergence,
and the procedure is iterated. Whenever a paramagnetic state
is found (signaled by all ηa→i = 1) or at some intermediate
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steps, a rapid search process like simulated annealing at a
fixed cooling rate is run.

This SID algorithm has been tested successfully on the
largest (up to N = 2000) existing benchmarks (9) of random
3sat instances in the hard regime. Satisfying assignments
have been found for all benchmarks. We have applied the
SID to much larger instances, increasing N up to N = 105 at a
fixed α = 4.2. The algorithm is very efficient: it always finds
a SAT configuration, and its apparent complexity scales like
N2, although more systematic studies with higher statistics
will be necessary to establish this behaviour. For the very
same large instances, the only existing algorithm able to find
solutions, at a considerable computational cost, is a highly
optimized version of the walksat algorithm (9, 34).

Conclusion. We have proposed an analytical method that
predicts quantitatively the phase diagram of the random 3sat
problem in the limit of infinite number of clauses, and opens
the way to other types of algorithms. The existence of an
intermediate phase with many metastable states close to the
SAT-UNSAT transition explains the slowing down of
algorithms in this region. We would like to stress that the
solution which we propose is typical of a ’one step replica
symmetry breaking’ solution, as it is called in spin glasses
(10). All the consistency checks of the analytic results lead us
to believe that this solution is exact for the 3sat problem.
From the strict mathematical point of view, the phase diagram
which we propose should be considered as a conjecture, as
for the great majority of the theoretical results in statistical
physics. Our computation implies that a way to provide a
fully rigorous proof of the transition behaviour in random
Ksat problems could be based on the study of the
decomposition of the probability measure into states endowed
with the clustering property (35). On the other hand, the
predictions of our theory can be compared with numerical
experiments, and our first such tests have confirmed its
validity. Based on the analytical study, our algorithm looks
promising in that it can solve large instances exploring a
rather small number of spin configurations. It will be very
interesting to explore its application to other optimization
problems.
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Fig. 1. In the random 3sat problem, the graph of clauses is
locally isomorphic to a tree. Variables (spins) are depicted by
a circle, and clauses by a square. The cavity-bias ua→1 sent
from the red clause a to the variable s1 summarizes the effects
of optimizing clause a on s2,s3, taking into account all the
blue+green (top) part of the graph, when the yellow (bottom)
part has been taken away. The cavity-field h2→a (resp. h3→a)
sums up all cavity-biases w1,...,wq (v1,...,vq′) arriving onto s2

(s3) from the blue (green) clauses, in the absence of the red
clause.

Fig. 2. The phase diagram of the random 3sat problem.
Plotted is e0, the number of violated clauses per variable
(red), versus the control parameter α which is the number of
clauses per variable. The sat-unsat transition occurs at α = αc

∼ 4.256. The green line is eth, the threshold energy per
variable, where local algorithms get trapped. The blue line is
the complexity Σ of satisfiable states, equal to 1/N times the
logarithm of their number.
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