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Abstract

Automated generators for synthetic models and data can
play a crucial role in designing new algorithms/model-
frameworks, given the sparsity of benchmark models
for empirical analysis and the cost of generating mod-
els by hand. We describe an automated generator for
benchmark models that is based on using a composi-
tional modeling framework and employs random-graph
models for the system topology. We choose the sys-
tem topology that best matches the topology of the real-
world system using a domain-analysis algorithm. To
show the range of models for which this approach is ap-
plicable, we demonstrate our model-generation process
using two examples of model generation optimized for
a specific domain: (1) model-based diagnosis for dis-
crete Boolean circuits, and (2) E.coli TRN networks for
simulating gene expression.

Introduction

Creating benchmark model suites is becoming increasingly 1

important, as such models are needed to validate a va-
riety of algorithms, in domains including VLSI design
(where models are intended to meet particular specifica-
tions) (Stroobandt 2001), the Internet (Mahadeeral.
2006), model-based diagnosis (Provan & Wang 2007), and
bioinformatics (Van den Bulcket al. 2006; Mendes, Sha,

& Ye 2003). Given the sparsity of benchmark models and

the cost of generating models by hand, it is critical to design 3.

an automated generator for synthetic models and data.

To satisfy this need, we describedamain-independent
automated generator for benchmark models that is based
on using a compositional modeling framework and employs
random-graph models for the system topology. Composi-
tional modeling (Keppens & Shen 2001) is the predominant
knowledge-based approach to automated model construc-
tion. It assumes that a system can be decomposed into a
collection of components, each of which can be defined us-
ing a functional model. These component models are then
integrated into the full system model using a system topol-
ogy graph, which describes the component interactions. Al-
though there ar@lomain-specifisynthetic generators for
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certain domains, e.g., (Stroobandt 2001; Van den Buétke
al. 2006; Mahadevaet al. 2006), this is the firsomain-
independengenerator that enables users to adopt particular
topology-generation algorithms best suited to the particular
application.

In this article, we assume we have a library of functional
component models for the domain in question, so the main
focus of benchmark generation is on creating ensembles of
random but “realistic” topologies. A range of methods ex-
ist to generate system topologies, each of which has a set
of specific input parameters that must be optimized to cre-
ate a model that accurately depicts a domain-specific topol-
ogy. As we will show, the different generation methodolo-
gies produce quite different models, with different topolog-
ical properties, such as degree distribution, etc. Since each
application domain requires different topological properties,
the key to generating good benchmark models is to match
the generation methodology to the domain requirements.

Our contributions are as follows.

We describe a domain-independent synthetic model gen-
erator that can tailor high-fidelity models to arbitrary do-
mains based on domain properties.

2. We describe the domain-analysis process, specifying the

setll of parameters and the sétof metrics that must be
computed and hovdl and® are used to select the best
topology-generation algorithm.

We illustrate the domain-analysis and model-generation
procedure on two quite different domains: (1) model-
based diagnosis of discrete Boolean circuits (where we
compare the topological fidelity of the generated models
to that of real circuit models), and (2) simulation of tran-
scriptional regulatory networks based on synthetic gene
expression data.

Related Work

The topology-generation method we adopt was originally
developed based on the theory of random graphs and com-
plex networks—see (Boccaleti al. 2006) for background.
However, this method focuses solely on the system structure
(as captured by the graph), and ignores the system function-
ality. We extend this approach by adopting the system struc-
ture based on the random-graph generators, and then encod-
ing system functionality using a component library.



This work is most closely related to domain-specific We assume that a model can be generated from the tuple
model generators, which exist for circuits (Stroobandt 2001) (G, B), whereG denotes the topology graph, aBidienotes
and biological interaction kinetics models (Van den Bulcke the functionality descriptions for components. The topology
et al. 2006). Our approach is different from either of these graphG = (V, E) consists of vertice}” and edges” and
approaches, in that we make no prior assumptions about do- specifies the topological relations among the system com-
main properties, but rather compute the domain properties ponents. Each node € V' corresponds to a component or
necessary for model generation. Our model generation af == *h= mmtomn mmd mosh mdes 2 T mneenmm mn s
proach differs from related work in VLSI auto-generation,

e.g., (Stroobandt 2001), in several ways. The VLSI ap-
proach emphasizes circuit design for circuit optimization
and simulation after placement and routing; in contrast, ou

approach focuses on topological and organizational princi Plausible algorithms
ples of circuits, and can be used for a wider variety of ap- valion of parametors
plications, including the diagnostics applications we report Domain Topology —
Existing biological network generators, e.g., (Van den Bul- analysis —opjective " CCneration
cke et al. 2006; Mendes, Sha, & Ye 2003) use random- topological Models

metrics

—
omponent

Figure 1: Automated model generation framework.

graph models that have unsuccessfully reflected the unde

lying structure of biological networks (Churey al. 2003;

Hormozdiariet al. 2007). Van den Bulcke et al.(2006) pro-

posed an alternative topology generation approach for trar

scriptional regulatory networks (TRNs) by selecting sub- - .

graphs from previously described TRNs. Although this ap- /S Shown in Figure 1, we generate benchmark models in

proach captures some topological characteristics of TRNs & three-step process.

it is not scalable and depends on the availability of accurat 1. analyze existing domain models to extract important

data of existing TRNs. We improve the topology generatol model properties; .

with more biologically plausible models. 2. generate the (topology) gragh underlying each syn-
This paper improves upon the model generation approac _ thetic model; .

of (Provan & Wang 2007) in several ways. First, it explicitly 3- @SSign components to each nodedn to create the

defines a domain-analysis phase. Second, it extends and it system-level functional modéi;

proves upon the topology generation algorithms for creatint  For example, electronic circuits can be viewed as graphs
the underlying system structure, and examines awider ran¢ in which nodes are electronic components (such as logic
of metrics for empirically evaluating synthetic networks. gates in digital circuits) and edges are wires in a broad
Compositional modelling uses a set of functional compo- sense (Cancho, Janssen, & Solé 2001). In gene TRNs, nodes
nent models, together with a specification of componentin  represent genes and edges correspond to regulatory inter-
teractions (called a “scenario” in (Keppens & Shen 2001)) tc actions at transcriptional level between the genes (Van den
generate useful (mathematical) models. Our approach dii Bulckeet al. 2006; Mendes, Sha, & Ye 2003).
fers from that of (Keppens & Shen 2001) in that we cre- As another example, in auto-generating TRN models,

ate the system structure, or scenario using model gener.. each node ir(; is instantiated as a gene, and the interaction
tors instead of manual work. Further, although the model- kinetics between the genes are quantitatively modeled us-
generation (or compositional modeling) approach has pri- ing a set of ordinary differential equations (ODEs) (Van den
marily been applied to physical systems, it can be ap- Buickeet al. 2006; Mendes, Sha, & Ye 2003). For each
plied to other domains, such as socio-economic, ecologi- combination of a gene and its regulators, a proper enzyme
cal and biological systems (Van den Bulckeal. 2006; kinetic equation is selected, depending on the number of ac-
Mendes, Sha, & Ye 2003). tivators and repressors and on settings that control the frac-
tion of complex interactions (Van den Bulckéeal. 2006).

Modeling Framework , ) )
, _ _ , Topological Model Selection and Generation
This section describes our approach for generating bench-

mark models for compositional domains. A domdis To generate a synthetic netwatkusing an algorithmi, we
compositionalf a system model fronD can be composed provide toA a setll of input parameters, and then measure
from model components, each of which is defined by a com- the properties ofx (e.g., degree distribution) using a deof
ponent functional model. Our approach is applicable to any graph metrics (Mahadevatal. 2006) to compare the prop-
compositional domain, since (a) the underlying topologi- erties of the real and synthetic networks. For example, the
cal models can be optimized using appropriate parameters preferential attachment (PA) (Boccaletti al. 2006) algo-

to approximate virtually the structure of real-world com- rithm requires the number of nodes and edges ak input
plex systems (Boccaletéit al. 2006), and (b) functionality parameters.

is incorporated into the system model using a component-  There is a wide range of generation algorithms available,
library, where components can be developed for any domain e.g., (Boccalettiet al. 2006; Chunget al. 2003). Ta-

in which the system models are decomposable. ble 1 classifies the space of topology-generation approaches
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that our model-generation tool supports in terms of the key ~ Optimization-Based Generators:Rather than explicitly
properties of the approaches, together with their correspond- replicate of statistical properties, tlgptimization approach

ing parameters, recommended applications, and associated(OPT) use an optimization framework to model the mech-
model-generation computational costs. We classify the gen- anisms driving network growth. This approach gives rise
erator models into two main groups, as shown in column 1 of to power-laws in graph degree distributions (D’Soetal.
Table 1: explanatorymodels, which attempt to capture the 2007; Mathias & Gopal 2001). The OPT model formulates a
underlying generation process of the complex system in the weighted objective function over conflicting system proper-
resulting model, odescriptivemodels, which capture the  ties¢; and weights\;, e.g.,f = >_"" ; & - \;, and trades off
topology alone. For example, the explanatory Preferential the properties using the weights. For example, in circuit
Attachment model is designed to capture the growth process design we may trade off wire-lengfiv' L and logic-depth

of complex systems, in which new network structure prefer- LD, wheref = ALD + (1 — \)W L. We have used simu-
entially forms around existing sub-structures (Boccaketti lated annealing to search for the cost minimum of the objec-
al. 2006). In contrast, the descriptidé-series model (Ma- tive function (Kirkpatrick, Gelatt, & Vecchi 1983).

hadevaret al. 2006) just captures higher-order degree cor-  An explanatory model with parsimonious parameters can
relation distributions, independent of any complex system capture the general principles or structures of real-world sys-
growth process. Another dimension in model selection en- tems, but it is hard to match all topological metrics simulta-
compasses trade-offs between: (1) complexity of a model neously and perfectly As a consequence, we need to identify
and the number of metrics it tries to reproduce, and (2) its and understand the essential metrics that are responsible for
explanatory power and associated generality. The processcertain behaviors of certain applications, and focus on spec-
of generating high-fidelity synthetic models differs based on ified metrics necessary for capturing the domain-specific re-
this basic classification. In the following, we summarize our quirements of different applications. For instance, if we gen-
model selection process (using these two classes), and thenerate a model for evaluating the complexity of discrete MBD

review the different generation approaches.

Model Selection using Explanatory Models

To select an explanatory model, we must analyze the do-
main D to (1) select the most appropriate topology genera-
tion algorithmA from a setA4 of candidate algorithms, and
(2) provide parameters fot that are best suited to generat-
ing high-fidelity networks. We select an explanatory model
from a setA of possible generators (see Table 1) as follows:

1. analyze real-world network, together with key proper-
ties in domainD, to specify a topological metric sét
according to domain-specific requirements;

. generate potential algorithm sét C A based on analyt-
ical results in step 1;

. optimize parameterH; of each algorithmA4; € A’ to
matchG in terms of specified topological metrids and
put the A; into the result sed if it can matchG with
appropriate values di;

. if A contains multiple algorithms, we compute additional
metrics®’, according to further requirements i, and
continue to evaluate and select algorithms in term®’of

When using an explanatory model, we first restrict the
possible algorithms based dnodel Focus(cf. column 2
of Table 1), i.e., whether the domain provides informa-
tion to to generate a model from topological parameters, or
using an optimization approach given the system’s global
objective function. We briefly discuss these two approaches.

Topology-Based Generators:Given the wide range of
graph generators defined in the literature, e.g., (Boccaletti
et al. 2006; Chunget al. 2003), we have selected four of
the most important approaches, i.e., the small-world graph
(SWG), Preferential Attachment (PA), Spatial Preferential
Attachment (SPA) and Partial Duplication (PD) models.
Each approach has particular properties, which lend them-
selves to modeling particular domains with differing fidelity.
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algorithms, we need first to focus on domain-specific (join-
tree) metrics (Provan & Wang 2007), which are more impor-
tant than regular metrics.

In steps 3 and 4, after a plausible model is selected, we
further optimize its topology by searching over appropriate
values of input parameters to minimize the difference be-
tweenG and G in the specified metrics. We automatically
scan appropriate values in a specific range (within a reason-
able interval); if the topological metrics are monotonic func-
tions of input parameters (such asn the SPA model and
p, in the SWG model), we can speed up the search process
using strategies like the binary search.

Model Selection using Descriptive Models

The dK -series Modelgenerator (Mahadevaet al. 2006)
has as its primary input parameter an intedewhich al-
lows one to specify all degree correlations withigize sub-
graphs of a given graptt. 1K captures the degree dis-
tribution P, and is equal to the generalized random graph
(GRG) (Boccalettiet al. 2006). 2K -graphs reproduce the
joint degree distribution, an8lK -graphs consider intercon-
nectivity among triples of nodes.
Given a descriptivel K -series algorithm, we generate a
synthetic mode{> by increasing the input parametel (in-
til the generated grapi matches the properties of the real-
world graphG with sufficient fidelity. Increasing values of
d capture progressively more propertieggfat the cost of
more complex representation of the probability distribution
and dramatically increasing computational complexity.
Although thed K -series model generally can capture reg-
ular topological metrics better than explanatory models due
to the number of constraints imposed, the model doesn't pro-
vide insights into the driving force shaping the network, and

Actually, alarge number parameters are needed for every value
of d in real implementations, butis the governing parameter.



Table 1: Topology Generation Approaches. Input parametergeneration algorithms are as follows:—node number;n—edge number;
pr—rewiring probability;a—spatial factorgs—seed networkp,—duplication probability;\;—trade-off weightd—subgraph size

Generation Key Recommended Computationa
ggggl :\:A;Cduesl Algorithm Properties Parameters Applications CostIO
Small-world Graph| Exponential degree dist n,m,p, Technological systems | Low
Topological | (SWG) tribution
Explanatory Properties Preferential Attach-{ Power Taw degree distrif n,m WWW, social and cita-| Low
ment (PA) bution tion networks
Spatial Preferentia] Power law degree distri{ n, m, « Spatial technological Medium
Attachment (SPA) | bution with cutoff systems
Partial Duplication| Power Taw degree distri{ n,m, gs, pa| Biological systems Low
(PD) bution
gun_ctl_ona_l Multi-constraint Power law degree distrit A; Technological and transt High
ptimization S . . :
Optimization bution with cutoff portation systems
(OPT)
Descriptive| Topological | dK-series All degree correlations ifl d Technological and bio{ High
properties d-sized subgraphs logical systems

it lacks predictive and rescaling power for explaining net- of all sub-graphs with specified sizes.

work growth. Our experiments on diagnosis model gener-  Join-tree Metrics: In many applications involving in-
ation also showed that th&¥<-series model is not flexible  ference over system#, e.g., probabilistic inference and

enough for fitting more complicated joint-tree metrics. model-based diagnosis, the inference complexity has been
] ] found to be dependent on parameters of the join-freaf
Summary of Topological Metrics the graphG of ¥ (Darwiche 1998¥. As a consequence, for
We assume that we have a correct set of functional compo- applications involving system inference, we use appropriate
nents3, meaning that it is the system topology which join-tree metrics, such as the largest clique giz€ )(Dar-

is the source of model fidelity. In this case, we need Wiche 1998), which can be used to represent the inference

to identify metrics for topology comparison, i.e., meth- complexity of the system.

ods to define some topological distance measi¢e G‘).

There are many metrics used to analyze and compare a Examples of High-Fidelity Model-Generation

system’s topological structures (Boccaletti al. 2006;

Mahadevaret al. 2006). The following list is not complete,

but we believe it is sufficiently diverse and representative to

be used as good examples of topological similarity.
Standard Metrics: Most research on topological analy-

sis of complex systems focuses on a subset of graph prop-

erties, in particular on the characteristic path lenftlaver- TRN Inference Benchmark

age clustering coefficieiit and degree distributioR, (Boc-- The validation of algorithms used to infer the structure of

calettiet al. 2006). ThelL measures the typical separation gene regulatory networks, based on expression data from

between two nodes in the network is given by the average high throughput microarrays, requires benchmark data sets
shortest path length. The clustering coeffici€ntharacter- for which the underlying network is known. Since experi-

izes the degree of cliquishness of a typical neighborhood (2 mental data sets of the appropriate size and design are usu-
node’simmediately connected neighbors), and the mean co- 4y not available, there is a clear need to generate well-

To demonstrate the range of models for which this approach
is applicable, we describe model-generation for two radi-
cally different domains, E.coli TRN networks for simulating
gene expression, and MBD inference of discrete circuits.

efficientC' is the average ovet’ for all nodes inG. The characterized synthetic data sets that allow thorough test-
degree distribution?; specifies the probability of a node ing of learning algorithms in a fast and reproducible man-
having degreé. _ _ ner (Mendes, Sha, & Ye 2003; Van den Bulekeal. 2006).

Extended Topology Metrics: We focus on the following So we need a network generator that creates synthetic TRNs
extended metrics. ) _ i and produces simulated gene expression data that approxi-

s-Metric: The s-Metric of graph G is defined ag) = mates experimental data. TRN model generation provides a
2 edge(vsvy) dids, Where(v;, v;) is the edges in the graph,  go0d example to demonstrate the applicability of our general
andd; andd; are the degrees of the node and v; re- model generator to biological domains, and we use the well-
spectively. Thes-Metric is closely related to betweenness, known TRN of E. coli collected by Shen-Orr et al. (Van den
gggge correlation and graph assortativity(Mahadetaah. Bulckeet al. 2006) as the targeted domain model.

Subgraph Frequency Distributior?(F, (G)) defines that 2Roughly speaking, the join-treE of a graph( is a topological
probability of subgraph of type occurring in grapl. The transformation of7 into a tree of cliques, where a clique is a fully-

distributionP(F; (G)) enables us to analyze the frequencies connected subgraph (Darwiche 1998).
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Explanatory Model Approach We generated the syn-

thetic TRN model based on the first three steps in the process

of model selection, as discussed in the previous section.
Step 1: We analyzed the E.coli TRN model and found that

it displays a clear power law degree distribution as shown in
Figure 2. Since the synthetic TRN models are used to gener-

ate gene expression data (on which the accuracy of reverse-

engineering algorithms is evaluated), we only need to mea-
sure the model fidelity in terms of regular topological met-
rics. For this task, we use the degree distributi@nwhich

is the most fundamental and widely-used metfig.can be
simplified as an exponerit when following a power law;
the 3 of the E.coli TRN model is abo@ 5.

Step 2: According to key properties of the potential al-
gorithms listed in Table 1, both the PA and PD model can
generate a power law degree distribution, and thus are se-
lected as candidate algorithms.

Step 3: The parameters in thB A(n, m) and PD(n,m,
gs,pa) algorithms are optimized in terms Gf n andm are

Table 2: The statistics on the average clustering coeffiGiehar-
acteristic path lengtth, ands-Metric of E. coli and the graphs gen-
erated by the 3K-series model (averaged over 100 graphs).

Model | L C s-Metric
E.coli | 4.83371| 0.11018| 26621
3K 4.64722| 0.11018| 26621

Model-Based Diagnosis Benchmark

The Model-based diagnosis (MBD) problem determines
whether an assignment of failure status to a set of mode-
variables is consistent with a system description and an ob-
servation (e.g., of sensor values). For the target domain of
ISCAS85 benchmark circuits (Harlow 2000), we synthe-
sized topological models having the identical numbers of
nodes and edges, and tried to characterize average-case di-
agnosis inference complexity in real circuits.

Explanatory Model Approach We generated MBD mod-

assigned as the numbers of nodes and edges in the actua!s using the four steps shown below.

TRN model respectively. We carefully sampled an appro-
priate subgraph of the TRN of E. coli using the method in
(Van den Bulckeet al. 2006) as the seed gragh Chunget

al. (2003) showed that in the PD modglis a monotonically
decreasing function gf;, so we can approximate the degree
distribution of the TRN of E. coli by adjusting;. The PA
model’s value ofs is fixed at abou8, but the PD model can
generate3 in a wide rangg1 ~ 3), consistent with vari-
ous real biological networks(Chureg al. 2003). Figure 2
shows that the PD modep{ = 0.2) closely matches the
actual TRN, much better than can the PA model.

1000

E. coli ——
PD(p=0.2)
PA -

Cumulative node number

10
Degree

100

Figure 2: The cumulative degree distribution of E. coli and th

Step 1: We used as our primary metric the maximum
clique sizeu(7) in the compiled join-tree structure, which
is a typical complexity measure for this type of model (Dar-
wiche 1998), and is correlated to the tail length of degree
distribution P, (Provan & Wang 2007). As shown in Fig-
ure 3, the tail of P, must be modeled well, since it defines
the high-degree nodes that contribute to large cliques in the
join-tree, and hence high complexities using join-tree met-
rics. We have empirically showed that most of the ISCAS85
circuits have power law degree distributions with sharp cut-
offs, which can be well characterized by the SPA and OPT
models in Table 1. The SWG model naturally has a sharp
cutoff in its exponential degree distribution, and can vary
the tail length of its degree distribution in a limited range.

Step 2: Based on the above analysis, the SPA, OPT, and
SWG model can be selected as potential candidates.

Step 3: We automatically optimized parameters in each
model to match the.(7) of real circuits. Experiments
showed that all selected models can match real circuits
with appropriate parameters. For example, the typical cir-
cuit C432 can be matched by the SWG model with~
0.28 (Provan & Wang 2007), the SPA model with ~
3.7 (as shown in Figure 3). We, along with Barthelemy
(2003) have found that, under appropriate parameters, the
SPA model can generate structures similar to that of the
OPT model. However, the computational cost of model-

corresponding graphs generated by the PD and PA model (averagedgeneration using the OPT model is significantly higher than

over 100 runs).

dK-series Approach Table 2 shows that the graphs gener-
ated by thel K -series model perfectly match common graph
metrics of the E. coli TRN, including®, whend = 3.

The experimental results show that @& -series is a good
model for TRN benchmark generation. However, compared
with the parsimonious PD model, thH<-series model is
more computationally expensive and less flexible, since it
requires as input parameters multiple degree correlations
within d-sized subgraphs of an existing TRN.
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that of using the SPA model, so we use the SPA model as an
efficient alternative of the OPT model.

Step 4: Since both the SPA and SWG model fit the real
circuits well in terms ofu(7), we can further refine the
model selection by other topological metrics, such as degree
distribution P,. Based onP;, the SPA model's power-law
distribution can match real circuits better than can the SWG
model’'s exponential distribution.

dK-series Approach Whend = 3, thedK-series model
can match almost all common circuit topological metrics
perfectly, as also occurs in the case of the TRN and Internet
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Figure 3: The inference complexity and maximal degree of the
SPA model corresponding to the circuit C432 (averaged over 100
runs).

Table 3: The inference complexity of C432 and correspondifig
series Modelsd = 1,2, 3). All values of three models are aver-
aged over 100 graphs respectively.
Model C432 | 1K
max clique size| 1.4el14| 8.9el7

2K
3.3e16

3K
1.8e16

modeling (Mahadevagt al. 2006). Table 3 shows, however,
thatd = 3 provides insufficient fidelity to match(7) met-

rics for MBD benchmark generation; it also shows that in-
creasing/ can generate random graphs with increasing lev-
els of fidelity of inference complexity. Fat > 3 the com-
putational complexity increases dramatically, and the size of

machine learning techniques. Third, further improvements
in topology-generators are necessary to increase the fidelity
of the synthetic models.
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