
MAY/JUNE 2002 31

L I M I T S O F
C O M P U T A T I O N

Compared to the traditionally close rela-
tionship between physics and mathe-
matics, an exchange of ideas and meth-
ods between physics and computer

science barely exists. However, the few interac-
tions that have gone beyond Fortran program-
ming and the quest for faster computers have been
successful and have provided surprising insights in
both fields. This is particularly true for the mutual
exchange between statistical mechanics and the
theory of computational complexity. Here, I discuss
this exchange in a manner directed at physicists
with little or no knowledge of the theory.

The measure of complexity
The branch of theoretical computer science

known as computational complexity is con-
cerned with classifying problems according to
the computational resources required to solve
them (for additional information about this field,
see the “Related Works” sidebar). What can be
measured (or computed) is the time that a par-
ticular algorithm uses to solve the problem. This
time, in turn, depends on the algorithm’s imple-

mentation as well as the computer on which the
program is running.

The theory of computational complexity pro-
vides us with a notion of complexity that is
largely independent of implementation details
and the computer at hand. Its precise definition
requires a considerable formalism, however.
This is not surprising because it is related to a
highly nontrivial question that touches the foun-
dation of mathematics: What do we mean when we
say a problem is solvable? Thinking about this
question leads to Gödel’s incompleteness theo-
rem, Turing machines, and the Church-Turing
thesis on computable functions.

Here we adopt a more informal, pragmatic
viewpoint. A problem is solvable if a computer
program written in your favorite programming
language can solve it. Your program’s running
time or time complexity must then be defined with
some care to serve as a meaningful measure of
the problem’s complexity.

Time complexity
In general, running time depends on a prob-

lem’s size and on the specific input data—the in-
stance. Sorting 1,000 numbers takes longer than
sorting 10 numbers. Some sorting algorithms
run faster if the input data is partially sorted al-
ready. To minimize the dependency on the spe-
cific instance, we consider the worst-case time
complexity T(n):

COMPUTATIONAL COMPLEXITY
FOR PHYSICISTS

The theory of computational complexity has some interesting links to physics, in particular
to quantum computing and statistical mechanics. This article contains an informal
introduction to this theory and its links to physics.

STEPHAN MERTENS

Otto-von-Guericke University, Magdeburg

1521-9615/02/$17.00 © 2002 IEEE

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

32 COMPUTING IN SCIENCE & ENGINEERING

(1)

where t(x) is the algorithm’s running time for in-
put data x (in arbitrary units), and the maximum
is taken over all problem instances of size n. The
worst-case time is an upper bound for the ob-
servable running time.

A measure of time complexity should be based
on a unit of time that is independent of the spe-
cific CPU’s clock rate. Such a unit is provided by
the time it takes to perform an elementary op-
eration such as adding two integer numbers.
Measuring the time in this unit means counting
the number of elementary operations your algo-
rithm executes. This number in turn depends

strongly on the algorithm’s implementation de-
tails—smart programmers and optimizing com-
pilers will try to reduce it. Therefore, rather than
consider the precise number T(n) of elementary
operations, we only consider the asymptotic be-
havior of T(n) for large values of n as the Lan-
dau symbols O and Θ denote:

• We say T(n) is of order at most g(n) and write
T(n) = O (g(n)) if positive constants c and n0 ex-
ist such that T(n) ≤ cg(n) for all n ≥ n0.

• We say T(n) is of order g(n) and write T(n)
=Θ(g(n)) if positive constants c1, c2, and n0 exist
such that c1g(n) ≤ T(n) ≤ c2g(n) for all n ≥ n0.

Multiplying two n × n matrixes requires n3

multiplications, according to the textbook for-
mula. However, this does not mean that the
problem of multiplying two n × n matrices has
complexity Θ(n3). The textbook formula is a par-
ticular algorithm, and an algorithm’s time com-
plexity is only an upper bound for a problem’s in-
herent complexity. In fact, researchers have found
faster matrix multiplication algorithms with com-
plexity O (nα) and α < 3 during the last decades—
the current record being α = 2.376.1 Because the
product matrix has n2 entries, α cannot be smaller
than 2; it is an open question whether an algo-
rithm can achieve this lower bound.

A problem where the upper bound from algo-
rithmic complexity meets an inherent lower
bound is sorting n items. Under the general as-
sumption that comparisons between pairs of
items are the only source of information about
them, Θ(n log n) is a lower bound for the num-
ber of comparisons to sort n items in the worst
case.2 This bound is met by algorithms such as
“heapsort” or “mergesort.”

Problem size
Our measure of time complexity still depends

on the somewhat ambiguous notion of problem
size. In the matrix multiplication example, we
tacitly took the number n of rows of one input
matrix as the “natural” measure of size. Using
the number of elements m = n2 instead speeds up
the O (n3) algorithm to O (m3/2) without chang-
ing a single line of program code. An unam-
biguous definition of problem size is required to
compare algorithms.

In computational complexity, all problems
solvable by a polynomial algorithm—that is, an
algorithm with time complexity Θ(nk) for some
k—are lumped together and called tractable.
Problems that can only solvable by algorithms

T n t x

x n
() max (),=

=

Related Work
For introductions into the field of computational complexity, see

E.L. Lawler et al., eds., The Traveling Salesman Problem, Wiley-Interscience Series
in Discrete Mathematics and Optimization, John Wiley & Sons, New York, 1985.

H.R. Lewis and C.H. Papadimitriou, “The Efficiency of Algorithms,” Scientific
American, vol. 109, no. 1, Jan. 1978, pp. 96–109.

C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Prentice-Hall,
Englewood Cliffs, N.J., 1982.

For a deep understanding of the field, read the following classic
textbooks:

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, New York, 1997.

C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading,
Mass., 1994.

The complexity of Ising spin systems is discussed in:

B. Hayes, “Computing Science: The World in a Spin,” American Scientist, vol. 88, no.
5, Sept./Oct. 2000, pp. 2384–388; www.amsci.org/amsci/issues/comsci00/
compsci2000-09.html.

For an entertaining introduction (written by a physicist) to
Gödel’s incompleteness theorem, Turing machines, and the
Church-Turing Thesis on computable functions, read

R. Penrose, The Emperor’s New Mind, Oxford Univ. Press, 1989.

To learn more about quantum parallelism, see www.qubit.org or

D. Aharonov, “Quantum Computation,” Ann. Rev. Computational Physics VI,
D. Stauffer, ed., World Scientific, 1998.

Phase transitions in computational complexity are discussed in:

O. Dubois et al., eds., “Phase Transitions in Combinatorial Problems,” special
issue of Theor. Comp. Sci., vol. 265, nos. 1–2, 2001.

B. Hayes, “Computing Science: The Easiest Hard Problem,”American Scientist,
vol. 90, no. 2, Mar./Apr. 2002, pp. 113–117; www.amsci.org/amsci/issues/
comsci02/compsci2002-03.html.

B. Hayes, “Computing Science: Can’t Get No Satisfaction,” American Scientist,
vol. 85, no. 2, Mar./Apr. 1997, pp. 108–112; www.amsci.org/amsci/issues/
Comsci97/compsci9703.html.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 33

with nonpolynomial running time, such as Θ(2n)
or Θ(n!), are also lumped together and called in-
tractable. There are practical as well as theoreti-
cal reasons for this rather coarse classification.
One of the theoretical advantages is that it does
not distinguish between the O (n3) and O (m3/2)
algorithm example from above; hence, we can
afford some sloppiness and stick with our am-
biguous natural measure of problem size.

Tractable and intractable problems
The terms tractable and intractable for prob-

lems with polynomial and exponential algo-
rithms refer to the fact that an exponential al-
gorithm means a hard limit for the accessible
problem sizes. Suppose that, with your current
equipment, you can solve a problem of size n
just within your schedule. If your algorithm has
complexity Θ(2n), a problem of size n + 1 needs
twice the time, pushing you off schedule. The
increase in time caused by an Θ(n) or Θ(n2) al-
gorithm, on the other hand, is far less dramatic
and can easily be compensated for by upgrad-
ing your hardware.

You might argue that a Θ(n100) algorithm out-
performs a Θ(2n) algorithm only for problem
sizes that will never occur in your application. A
polynomial algorithm for a problem usually goes
hand in hand with a mathematical insight into that
problem, which lets you find a polynomial algo-
rithm with a small degree, typically Θ(nk), k = 1,
2, or 3. Polynomial algorithms with k > 10 are
rare and arise in rather esoteric problems. It is
this mathematical insight (or rather the lack of
it) that turns intractable problems into a chal-
lenge for algorithm designers and computer sci-
entists. Let’s look at a few examples of tractable
and intractable problems to learn more about
what separates one from the other.

Tractable trees
Consider the following problem from network

design. You have a business with several offices,
and you want to lease phone lines to connect
them. The phone company charges different
amounts to connect different pairs of cities, and
your task is to select a set of lines that connects
all your offices with a minimum total cost.

In mathematical terms, the cities and the lines
between them form the vertices V and edges E
of a weighted graph G = (V, E), the weight of an
edge being the corresponding phone line’s leas-
ing costs. Your task is to find a subgraph that
connects all vertices in the graph (for example,

a spanning subgraph) and whose edges have
minimum total weight. Your subgraph should
not contain cycles because you can always re-
move an edge from a cycle, keeping all nodes
connected and reducing the cost. A graph
without cycles is a tree, so what you are look-
ing for is a minimum spanning tree (MST) in a
weighted graph (see Figure 1). So, given a
weighted graph G = (V, E) with nonnegative
weights, find a spanning tree T ⊆ G with min-
imum total weight.

How do you find an MST? A naive approach
is to generate all possible trees with n vertices
and keep the one with minimal weight. The enu-
meration of all trees can be done using Prüfer
codes,3 but Cayley’s formula tells us that there
are nn–2 different trees with n vertices. Already
for n = 100 there are more trees than atoms in
the observable universe. Hence, exhaustive enu-
meration is prohibitive for all but the smallest
trees. The mathematical insight that turns MST
into a tractable problem is this:

Lemma: Let U ⊂ V be any subset of the ver-
tices of G = (V, E), and let e be the edge with the
smallest weight of all edges connecting U and V –
U. Then e is part of the MST.

Proof (by contradiction): Suppose T is an MST
not containing e. Let e = (u, v), with u ∈ U and v
∈ V – U. Then, because T is a spanning tree, it
contains a unique path from u to v that together
with e forms a cycle in G. This path must include
another edge f connecting U and V – U. Now T +
e – f is another spanning tree with less total
weight than T. So T was not an MST.

The lemma lets an MST grow edge by edge—
using Prim’s algorithm, for example:

Prim(G)
Input: weighted graph G(V, E)
Output: minimum spanning tree T ⊆ G

10

4

78

4

8

11
7

2

6

1 2

14

9

Figure 1. A weighted graph and its minimum
spanning tree (shaded edges).

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

34 COMPUTING IN SCIENCE & ENGINEERING

begin
Let T be a single vertex v from G
while T has less than n vertices

find the minimum edge
connecting T to G – T

add it to T
end

end

The precise time complexity of Prim’s algorithm
depends on the data structure used to organize the
edges, but in any case, O(n2log n) is an upper bound
(faster algorithms are discussed elsewhere3).
Equipped with such a polynomial algorithm, you
can find MSTs with thousands of nodes within sec-
onds on a personal computer. Compare this to an
exhaustive search. According to our definition,
finding an MST is a tractable problem.

Intractable itineraries
Encouraged by the efficient algorithm for an

MST, let us now investigate a similar problem.
Your task is to plan an itinerary for a traveling
salesman who must visit n cities. You are given a
map with all cities and the distances between
them. In what order should the salesman visit
the cities to minimize the total distance traveled?
You number the cities arbitrarily and write down
the distance matrix (dij), where dij denotes the
distance between city i and city j. A tour is given
by a cyclic permutation π: [1...n]→[1...n], where
π(i) denotes the successor of city i. Your prob-
lem can be defined as

The Traveling Salesman Problem (TSP): Given
an n × n distance matrix with elements dij ≥ 0,
find a cyclic permutation π : [1...n] → [1...n] that
minimizes

(2)

The TSP is probably the most
famous optimization problem
(see www.keck.caam.rice.edu/tsp).
Finding good solutions, even to
large problems, is not difficult, but
how can we find the best solution
for a given instance? There are (n
– 1)! cyclic permutations, and cal-
culating the length of a single tour
takes O (n). So, an exhaustive
search has complexity O (n!).
Again this approach is limited to
very small instances.

Is there a mathematical insight that provides
a shortcut to the optimum solution, such as for
an MST? Nobody knows. Despite many efforts,
researchers have not found a polynomial algo-
rithm for the TSP. There are some smart and ef-
ficient (that is, polynomial) algorithms that find
good solutions but do not guarantee yielding the
optimum solution.4 According to this definition,
the TSP is intractable.

Why is the TSP intractable? Again, nobody
knows. There is no proof that excludes the exis-
tence of a polynomial algorithm for the TSP, so
maybe someday somebody will come up with a
polynomial algorithm and the corresponding
mathematical insight. This is very unlikely, how-
ever, as we will see soon.

The TSP’s intractability astonishes all the
more considering the tractability of a very simi-
lar, almost identical problem, the Assignment
problem:

Assignment: Given an n × n cost matrix with el-
ements dij ≥ 0, find a permutation π : [1...n] →
[1...n] that minimizes

(3)

The only difference between the TSP and As-
signment is that the latter allows all permuta-
tions on n items, not just the cyclic ones. If dij
denotes distances between cities, Assignment
corresponds to total tour length minimization
for a variable number of salesmen, each travel-
ing his own subtour (see Figure 2).

The classical application of Assignment is the
assignment of n tasks to n workers, subject to the
constraint that each worker is assigned exactly

c dn i i

i

n

() .()π π=
=

∑
1

c dn i i

i

n

() .()π π=
=

∑
1

(b)(a)

Figure 2. Same instance, different problems: A valid configuration of (a) the Traveling
Salesman Problem and (b) the Assignment Problem. Whereas the Assignment
Problem can be solved in polynomial time, the TSP is intractable.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 35

one task. Let dij denote the cost of worker I per-
forming task j, and π(i) denote the task assigned
to worker i. Assignment is the problem of mini-
mizing the total cost.

There are n! possible assignments of n tasks to
n workers—hence, exhaustive enumeration is
again prohibitive. In contrast to the TSP, how-
ever, we can solve Assignment in polynomial
time—for example, using the O(n3) Hungarian
algorithm.5 Compared to an MST, the algorithm
and the underlying mathematical insight are a
bit more involved and not discussed here.

Decision problems
So far, we have discussed optimization prob-

lems: solving MST, TSP, or Assignment implies
that we compare an exponential number of feasi-
ble solutions with each other and pick the opti-
mum solution. Exhaustive search does this
explicitly; polynomial shortcuts implicitly. By in-
vestigating simpler problems whose solutions are
recognizable without explicit or implicit compar-
ison to all feasible solutions, we might learn more
about the barrier that separates tractable from in-
tractable problems. So, let’s consider decision prob-
lems, whose solution is either “yes” or “no.”

We can turn any optimization problem into a
decision problem by adding a bound B to the in-
stance. For example,

MST (decision): Given a weighted graph G =
(V, E) with nonnegative weights and a number
B ≥ 0, does G contain a spanning tree T with to-
tal weight ≤ B?

TSP (decision): Given an n × n distance matrix
with elements dij ≥ 0 and a number B ≥ 0, is there
a tour π with length ≤ B?

In a decision problem, the feasible solutions are
not evaluated relative to each other but to an ab-
solute criterion: a tour in the TSP either has
length ≤ B or it doesn’t.

We can solve MST(D) in polynomial time by
simply solving the optimization variant MST
and comparing the result to the parameter B.
For the TSP(D), this approach does not help. In
fact, we see later that a polynomial algorithm ex-
ists for the TSP(D) if and only if there exists a
polynomial algorithm for the TSP. It seems as if
we cannot learn more about the gap between
tractable and intractable problems by consider-
ing decision variants of optimization problems.
So let’s look at other decision problems not de-
rived from optimization problems.

Eulerian circuits
Our first genuine decision problem dates back

to the 18th century, where in the city of Königs-
berg (now Kaliningrad), seven bridges crossed
the river Pregel and its two arms (see Figure 3).
A popular puzzle of the time asked if it were pos-
sible to walk through the city crossing each of
the bridges exactly once and returning home.

Leonhard Euler solved this puzzle in 1736.6
First, he recognized that to solve the problem,
the only thing that matters is the pattern of in-
terconnections of the banks and islands—a graph
G = (V, E) in modern terms. The graph corre-
sponding to the puzzle of the Königsberg
bridges has four vertices for the two banks and
two islands and seven edges for the bridges (see
Figure 3). Euler’s paper on the Königsberg
bridges is the birth of graph theory.

To generalize the Königsberg bridges prob-
lem, we need some terminology from graph the-
ory.3 A walk in a graph G = (V, E) is an alternat-
ing sequence of vertices v ∈ V and edges (v, v′) ∈
E: v1, (v1, v2), v2, (v2, v3), ..., (vl–1, vl), vl. Note that
the sequence begins and ends with a vertex, and
each edge is incident with the vertices immedi-
ately preceding and succeeding it. A walk is
termed closed if vl = v1; otherwise, it is open. A
walk is called a trail if all its edges are distinct,
and a closed trail is called a circuit. What the
strollers in Königsberg tried to find was a circuit

f
b

B

D

C

A

c
d

e

g

a

Figure 3. The seven bridges
of Königsberg, (a) as drawn
in Leonhard Euler’s paper
from 17366 and (b)
represented as a graph. In
the graph, the riverbanks
and islands are condensed to
points (vertices), and each of
the bridges is drawn as a line
(edge).

c C

c

A

bB

D

e

d

f

(a) (b)

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

36 COMPUTING IN SCIENCE & ENGINEERING

that contains all edges. In honor of Euler, such a
circuit is called an Eulerian circuit.

We can now define the generalization of the
Königsberg bridges problem:

Eulerian Circuit: Given a graph G = (V, E),
does G contain an Eulerian circuit?

Obviously, this is a decision problem. The an-
swer is either “yes” or “no,” and we can check to
see whether a circuit is Eulerian without resort-
ing to all possible circuits.

Once again, an exhaustive search would solve
this problem, but Euler noticed the intractability
of this approach. More than 200 years before the
advent of computers, he wrote,

The particular problem of the seven bridges of
Königsberg could be solved by carefully tabulat-
ing all possible paths, thereby ascertaining by in-
spection which of them, if any, met the require-
ment. This method of solution, however, is too
tedious and too difficult because of the large
number of possible combinations, and in other
problems where many more bridges are involved
it could not be used at all.7

He solved the Königsberg bridges problem not
by listing all possible trails but by using mathe-
matical insight. He noticed that in a circuit, you
must leave each vertex via an edge different from
the edge that has taken you there. In other
words, the vertex’s degrees (that is, the number
of edges adjacent to it) must be even. This is ob-
viously a necessary condition, but Euler proved
that it is also sufficient:

Theorem: A connected graph G = (V, E) con-
tains an Eulerian circuit if and only if the degree
of every vertex v ∈ V is even.

Euler’s theorem lets us devise a polynomial al-
gorithm for the Eulerian Circuit: Check the de-
gree of every vertex in the graph. If one vertex
has an odd degree, return “no.” If all vertices
have an even degree, return “yes.” This algo-
rithm’s running time depends on the graph’s en-
coding. If G = (V, E) is encoded as a |V| × |V|
adjacency matrix with entries aij = number of
edges connecting vi and vj, the running time is
O(|V|2).

Thanks to Euler, the Eulerian Circuit is a
tractable problem. The burghers of Königsberg,
on the other hand, had to learn from Euler that
they would never find a walk through their
hometown crossing each of the seven bridges ex-
actly once.

Hamiltonian cycles
Another decision problem is associated with

the mathematician and Astronomer Royal of Ire-
land, Sir William Rowan Hamilton. In 1859,
Hamilton put on the market a new puzzle called
the Icosian game (see Figure 4).

Generalizing the Icosian game calls for some
more definitions from graph theory: A closed
walk in a graph is called a cycle if all its vertices (ex-
cept the first and the last) are distinct. A Hamil-
tonian cycle is one that contains all vertices of a
graph. The generalization of the Icosian game
then reads

Hamiltonian Cycle: Given a graph G = (V, E),
does G contain a Hamiltonian cycle?

There is a certain similarity between the Euler-
ian Circuit and Hamiltonian Cycle. In the for-
mer, we must pass each edge once—in the lat-
ter, each vertex once. Despite this resemblance,
the two problems represent entirely different de-
grees of difficulty. The available mathematical
insights into the Hamiltonian Cycle provide us
neither with a polynomial algorithm nor with a
proof that such an algorithm is impossible. The
Hamiltonian Cycle is intractable, and nobody
knows why.

Coloring
Imagine we wish to arrange talks in a congress

in such a way that no participant will be forced
to miss a talk he or she wants to hear. Assuming a
good supply of lecture rooms that lets us hold as

(b)(a)

Figure 4. Sir Hamilton’s Icosian game: (a) Find a route along the
edges of the dodecahedron, passing each corner exactly once and
returning to the starting corner. (b) A solution is indicated (shaded
edges) in the planar graph that is isomorphic to the dodecahedron.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 37

many parallel talks as we like, can we finish the
program within k time slots? We can formulate
this problem in terms of graphs: Let G be a graph
whose vertices are the talks and in which two
talks are adjacent (joined by an edge) if and only
if there is a participant wishing to attend both.
Your task is to assign one of the k time slots to
each vertex in such a way that adjacent vertices
have different slots. The common formulation of
this problem uses colors instead of time slots:

k-Coloring: Given a graph G = (V, E), is there a
coloring of the vertices of G using at most k dif-
ferent colors such that no two adjacent vertices
have the same color?

When k = 2, this problem is tractable—construct-
ing a polynomial algorithm is an easy exercise. For
k = 3, however, things change considerably: 3-Col-
oring is intractable. Note that for larger k, the
problem gets easier again: a planar graph is always
colorable with four colors. This is the famous 4-
Color Theorem. 3-Coloring remains intractable
even when restricted to planar graphs.

Satisfiability
I close this section with a decision problem

that is not from graph theory but from Boolean
logic. A Boolean variable x can take on the value
0 (false) or 1 (true). Boolean variables can be
combined in clauses using the Boolean operators

• NOT (negation): the clause is true
() if and only if x is false (x = 0).

• AND ∧ (conjunction): the clause x1 ∧ x2 is
true (x1 ∧ x2 = 1) if and only if both variables
are true: x1 = 1 and x2 = 1.

• OR ∨ (disjunction): the clause x1 ∨ x2 is true
(x1 ∨ x2 = 1) if and only if at least one of the
variables is true: x1 = 1 or x2 = 1.

A variable x or its negation is called a literal.
Different clauses can combine to yield complex
Boolean formulas such as

. (4)

A Boolean formula evaluates to either 1 or 0, de-
pending on the assignment of the Boolean vari-
ables. For example, F1 = 1 for x1 = 1, x2 = 1, x3 =
0, and F1 = 0 for x1 = x2 = x3 = 1. A formula F is
called satisfiable if there is at least one assignment
of the variables such that the formula is true. F1
is satisfiable,

(5)

is not.
We can write every Boolean formula in con-

junctive normal form (CNF)—that is, as a set of
clauses Ck combined exclusively with the AND
operator

F = C1 ∧ C2 ∧ ... ∧ Cm, (6)

where the literals in each clause are combined
exclusively with the OR operator. The examples
F1 and F2 are both written in CNF. Each clause
can be considered a constraint on the variables,
and satisfying a formula means satisfying a set of
(possibly conflicting) constraints simultaneously.
Hence, consider the following as a prototype of
a constraint satisfaction problem:8

Satisfiability (SAT): Given disjunctive clauses
C1, C2, ..., Cm of literals, where a literal is a vari-
able or negated variable from the set {x1, x2, ...,
xn}, is there an assignment of variables that satis-
fies all clauses simultaneously?

Fixing the number of literals in each clause leads to

k-SAT: Given disjunctive clauses C1, C2, ..., Cm
of k literals each, where a literal is a variable or
negated variable from the set {x1, x2, ..., xn}, is
there an assignment of variables that satisfies all
clauses simultaneously?

Polynomial algorithms are known for 1-SAT
and 2-SAT.9 No polynomial algorithm is known
for general SAT and k-SAT if k > 2.

Complexity classes
Now we have seen enough examples to intro-

duce two important complexity classes for deci-
sion problems and to discuss how these classes
relate to other kinds of problems.

Tractable problems
Defining the class of tractable decision problems

is easy: it consists of those problems for which a
polynomial algorithm is known. The corre-
sponding class is named P for “polynomial”:

Definition: A decision problem P is element of
the class P if and only if a polynomial time algo-
rithm can solve it.

Eulerian Circuit, 2-Coloring, MST(D), and so
forth are in P .

 F x x x x x x2 1 2 1 2 2 1(,) ()= ∨ ∧ ∧

F x x x x x x
x x x x x x
1 1 2 3 1 2 3

2 3 1 2 1 3

(, ,) ()
() () ()

= ∨ ∨ ∧
∨ ∧ ∨ ∧ ∨

 x

 x = 1
 x⋅

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

38 COMPUTING IN SCIENCE & ENGINEERING

Nondeterministic algorithms
The definition of the second complexity class

involves the concept of a nondeterministic algo-
rithm, which is like an ordinary algorithm, ex-
cept that it might use one additional, very pow-
erful instruction:10

goto both label 1, label 2

This instruction splits the computation into two
parallel processes, one continuing from each of
the instructions, indicated by “label 1” and “label
2.” By encountering more such instructions, the
computation branches like a tree into several
parallel computations that potentially can grow
as an exponential function of the time elapsed
(see Figure 5). A nondeterministic algorithm can
perform an exponential number of computations
in polynomial time.

In the world of conventional computers, non-
deterministic algorithms are a theoretical con-
cept only, but this could change in quantum
computing. We need the concept of nondeter-
minism to define the class NP of “nondeter-
ministic polynomial” problems:

Definition: A decision problem P is in the class
NP if and only if a nondeterministic algorithm
can solve it in polynomial time.

Solubility by a nondeterministic algorithm means
this: All branches of the computation will stop, re-
turning either “yes” or “no.” We say that the over-
all algorithm returns “yes” if any of its branches

returns “yes.” The answer is “no” if none of the
branches reports “yes.” We say that a nondeter-
ministic algorithm solves a decision problem in
polynomial time if the number of steps used by the
first of the branches to report “yes” is bounded by
a polynomial in the problem’s size.

We require polynomial solubility only for a de-
cision problem’s “yes” instances. This asymmetry
between “yes” and “no” reflects the asymmetry
between the “there is” and “for all” quantifiers in
decision problems. A graph G is a “yes” instance
of the Hamiltonian Cycle if there is at least one
Hamiltonian cycle in G. For a “no” instance, all
cycles in G must be non-Hamiltonian.

Conventional (deterministic) algorithms are
special cases of nondeterministic algorithms
(those nondeterministic algorithms that do not
use the goto both instruction). It follows imme-
diately that P ⊆ NP.

All decision problems discussed thus far have
been members of NP. Here’s a nondeterminis-
tic polynomial algorithm for SAT:

Satisfiability (F)
Input: Boolean formula F(x1, ..., xn)
Output: ‘yes’ if F is satisfiable, ‘no’ otherwise
begin

for i = 1 to n
goto both label 1, label 2

label 1: xi = true; continue
label 2: xi = false; continue

end
if F(x1, ..., xn) = true then return ‘yes’

else return ‘no’
end

The for loop branches at each iteration: in one
branch, xi = true; in the other branch, xi = false
(the continue instruction starts the loop’s next
iteration). After executing the for loop, we have
2n branches of computation—one for each of the
possible assignments of n Boolean variables.

The power of nondeterministic algorithms is
that they allow the exhaustive enumeration of an
exponentially large number of candidate solu-
tions in polynomial time. If the evaluation of
each candidate solution (calculating F(x1, ..., xn)
in the SAT example) in turn can be done in poly-
nomial time, the total nondeterministic algo-
rithm is polynomial. For a problem from the
class NP, the sole source of intractability is the
exponential size of the search space.

Succinct certificates
There is a second, equivalent definition of

no

no no

yes

no

no yes

no

no

no

no no
no

Elapsed
time

Figure 5. Example of a nondeterministic algorithm’s execution history.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 39

NP based on the notion of a succinct certificate.
A certificate is a proof. If you claim that a graph
G has a Hamiltonian Cycle, you can proof your
claim by providing a Hamiltonian Cycle. Cer-
tificates for the Eulerian Circuit and k-Coloring
are an Eulerian Circuit and a valid coloring, re-
spectively. A certificate is succinct if its size is
bounded by a polynomial in the problem size.
The second definition then reads

Definition: A decision problem P is element of
the class NP if and only if for every “yes” in-
stance of P there exists a succinct certificate that
can be verified in polynomial time.

The equivalence between both definitions can
be proven easily.10 The idea is that a succinct
certificate can deterministically select the branch
in a nondeterministic algorithm that leads to a
“yes” output.

The definition based on nondeterministic al-
gorithms reveals the key feature of the class NP
more clearly, but the second definition is more
useful for proving that a decision problem is in
NP. For example, consider

Compositeness: Given a positive integer N, are
there integer numbers p > 1 and q > 1 such that N
= pq?

A certificate of a “yes” instance N of Compos-
iteness is a factorization N = pq. It is succinct be-
cause the number of bits in p and q is less than
or equal to the number of bits in N, and it can

be verified in quadratic time by multiplication.
So, Compositeness ∈ NP.

Most decision problems ask for the existence of
an object with a given property, such as a cycle,
which is Hamiltonian or a factorization with inte-
ger factors. In these cases, the desired object might
serve as a succinct certificate. For some problems,
this does not work, however. For example,

Primality: Given a positive integer N, is N prime?

Primality is the negation or complement of
Compositeness: the “yes” instances of the for-
mer are the “no” instances of the latter and vice
versa. A succinct certificate for Primality is by
no means obvious. In fact, for many decision
problems in NP, no succinct certificate is
known for the complement—that is, whether the
complement is also in NP is not known. For
Primality, however, there is a succinct certificate
based on Fermat’s Theorem.11 Hence, Primal-
ity ∈ NP .

A first map of complexity
Figure 6a summarizes what we have achieved

so far. The class NP consists of all decision
problems whose sole source of difficulty is the
size of the search space, which grows exponen-
tially with the problem size. These problems are
intractable unless some mathematical insight
provides us with a polynomial shortcut to avoid
an exhaustive search. Such an insight promotes a
problem into the class P of polynomially solu-
ble problems.

(b)(a)

Compositeness

2-ColoringEulerian Circuit

Assignment(D)
MST(D)

2-SAT

3-Coloring

Graph-Isomorphism

SAT

3-SAT

Hamiltonian Cycle TSP(D)

Primality

P

NP

2-ColoringEulerian Circuit

Assignment(D)
MST(D)

2-SAT

Graph-Isomorphism

SAT

TSP(D)

Compositeness
Primality

Hamiltonian Cycle

3-Coloring3-SAT

PP P

NP

NP complete

Figure 6. (a) A first map of complexity; (b) the map of complexity revisited. All problems indicated are defined within the
text. Problems with a (D) are decision variants of optimization problems.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

40 COMPUTING IN SCIENCE & ENGINEERING

The class NP not only contains many prob-
lems with important applications but also repre-
sents a real challenge: all problems in NP still
have a chance to be in P. A proof of nonexis-
tence of a polynomial algorithm for a single
problem from NP would establish that P ≠
NP. As long as such a proof is missing,

(7)

represents the most famous open conjecture in
theoretical computer science.

NP completeness
So far, all the intractable problems seem to be

isolated islands in the map of complexity. In fact,
they are tightly connected by a device called poly-
nomal reduction, which lets us map the computa-
tional complexity of one problem to the com-
plexity of another. This finally leads to the
surprising result that there are some intractable
problems that are equivalent to all other prob-
lems. Each of these so called NP-complete
problems embodies the secret of intractability,
since a polynomial time algorithm for one of
them would immediately imply the tractability
of all problems in NP.

Polynomial reductions. The computational com-
plexities of two problems, P1 and P2, can be re-
lated to each other by constructing an algorithm
for P1 that uses an algorithm for P2 as a “sub-
routine.” Consider the following algorithm that
relates Hamiltonian Cycle to TSP(D):

Hamiltonian Cycle (G)
Input: Graph G = (V, E)
Output: ‘yes’ if G contains a Hamiltonian
cycle, ‘no’ otherwise
(1) begin
(2) n : = |V|
(3) for i = 1 to n
(4) for j = 1 to n
(5) if (vi, vj) ∈ E then dij := 1
(6) else dij := 2
(7) if TSP-decision (d, B := n) = ‘yes’

then return ‘yes’
(8) else return ‘no’
(9) end

This algorithm solves the Hamiltonian Cycle
by solving an appropriate instance of the
TSP(D). In the for loops (lines 3 through 5), a
distance matrix d is set up with entries dij = 1 if
there is an edge (vi, vj) in G—otherwise, dij = 2. A

Hamiltonian Cycle in G is a valid tour in the
corresponding TSP with all intercity distances
having length 1—that is, with total length n.
Conversely, suppose that the TSP has a tour of
length n. Because the intercity distances are ei-
ther 1 or 2, and a tour sums up n such distances,
a total length n implies that each pair of succes-
sively visited cities must have distance 1—that
is, the tour follows existing edges in G and cor-
responds to a Hamiltonian Cycle. So, the call to
a subroutine that solves TSP(D) (line 7) yields a
solution to the Hamiltonian Cycle.

How does this algorithm relate the computa-
tional complexity of the Hamiltonian Cycle to
that of the TSP(D)? This is a polynomial algo-
rithm if the call to the TSP(D) solver is consid-
ered an elementary operation. If someone comes
up with a polynomial algorithm for TSP(D), we
will instantly have a polynomial algorithm for
the Hamiltonian Cycle. We say that the Hamil-
tonian Cycle is polynomially reducible to TSP(D)
and write

Hamiltonian Cycle ≤ TSP(D). (8)

In many books, polynomial reducibility is de-
noted by ∝ instead of ≤. We use ≤ because this
notation stresses an important consequence of
polynomial reducibility:12 the existence of a
polynomial reduction from P1 to P2 excludes the
possibility that we can solve P2 in polynomial
time but not P1. Hence, we can read P1 ≤ P2 as
P1 cannot be harder than P2. Here is the (informal)
definition:

Definition: We say a problem P1 is polynomi-
ally reducible to a problem P2 and write P1 ≤ P2
if a polynomial algorithm exists for P1 provided
there is a polynomial algorithm for P2.

NP-complete problems. Here are some other poly-
nomial reductions that we can verify, similar to
Equation 8 (the corresponding reduction algo-
rithms appear elsewhere13):

SAT ≤ 3-SAT
3-SAT ≤ 3-Coloring
3-Coloring ≤ Hamiltonian Cycle

(9)

Polynomial reducibility is transitive: P1 ≤ P2 and
P2 ≤ P3 imply P1 ≤ P3. From transitivity and Equa-
tions 8 and 9, it follows that each SAT, 3-SAT, 3-
Coloring, and Hamiltonian Cycle reduces to
TSP(D)—that is, a polynomial algorithm for
TSP(D) implies a polynomial algorithm for all
these problems. This is amazing, but it’s only the

 P NP=
?

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 41

beginning. Stephen Cook14 re-
vealed polynomial reducibility’s
true scope in 1971 when he
proved that

Theorem: All problems in
NP are polynomially reducible
to SAT,

∀ P ∈ NP: P ≤ SAT. (10)

This theorem means that

• No problem in NP is harder
than SAT, or SAT is among
the hardest problems in NP.

• A polynomial algorithm for
SAT would imply a polyno-
mial algorithm for every problem in NP—
that is, it would imply P = NP .

It seems as if SAT is very special, but according
to transitivity and Equations 8 and 9, 3-SAT, 3-
Coloring, the Hamiltonian Cycle, or the
TSP(D) can replace it. These problems form a
new complexity class:

Definition: A problem P is called NP complete
if P ∈ NP and Q ≤ P for all Q ∈ NP.

The class of NP-complete problems collects the
hardest problems in NP. If any of them has an
efficient algorithm, then every problem in NP
can be solved efficiently—thus, P = NP. This is
extremely unlikely, however, considered the fu-
tile efforts of many brilliant people to find poly-
nomial algorithms for problems such as the
Hamiltonian Cycle or TSP(D).

The map of NP. Since Cook developed his the-
orem, many problems have been shown to be
NP complete (see www.nada.kth.se/~viggo/
wwwcompendium for a comprehensive, up-to-
date list of hundreds of NP-complete prob-
lems). Thus, the map of NP presented in Fig-
ure 6a needs some redesign (see Figure 6b). It
turns out that all the intractable problems we
have discussed so far are NP complete—except
Compositeness and Primality. For both prob-
lems, neither a polynomial algorithm is known
nor a polynomial reduction that classifies them
as NP complete. Another NP problem that re-
sists classification in either P or NP is

Graph Isomorphism: Given two graphs G = (V,
E) and G´(V, E´) on the same set of nodes, are G

and G´ isomorphic—that is, is there a permuta-
tion π of V such that G´ = π (G), where π(G) de-
notes the graph (V, {[π(u), π(v)] : [u, v] ∈ E})?

There are more problems in NP that resist
classification in P or NP, but none of these
problems has been proven not to belong to P or
NP. What has been proven is

Theorem: If P ≠ NP, then NP problems exist
that are neither in P nor NP complete.

This theorem15 rules out one of three tentative
maps of NP (see Figure 7).

Beyond NP
The notions NP and NP complete strictly

apply only to decision problems (“Is there a so-
lution?”). The ideas of this approach can be gen-
eralized to optimization problems (“What is the
best solution?”) and counting problems (“How
many solutions are there?”).

Optimization problems. How does the classifica-
tion of decision problems relate to optimization
problems? The general instance of an optimiza-
tion problem is a pair (F, c), where F is the set of
feasible solutions and c is a cost function c: F →
!. Here I consider only combinatorial optimiza-
tion where the set F is countable. A combinator-
ial optimization problem P comes in three dif-
ferent flavors:

1.The optimization problem P(O): Find the
feasible solution f *∈ F that minimizes the cost
function.

2.The evaluation problem P(E): Find the cost
c* = c (f *) of the minimum solution.

(c)(b)(a)

NP complete

P

NP complete

P

NP P = NP

PP

P = NP

Figure 7. Three tentative maps of NP. We can rule out map B; map A is likely (but not
surely) the correct map. The discovery of a polynomial algorithm for any of the NP-
complete problems would turn C into the correct map.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

42 COMPUTING IN SCIENCE & ENGINEERING

3.The decision problem P(D): Given a bound
B ∈ !, is there a feasible solution f ∈ F such
that c(f) ≤ B?

Under the assumption that we can evaluate the
cost function c in polynomial time, it is straight-
forward to write down polynomial reductions
that establish

P(D) ≤ P(E) ≤ P(O). (11)

If an optimization problem’s decision variant is
NP complete, there is no efficient algorithm for
the optimization problem at all—unless P =
NP. An optimization problem such as the TSP,
whose decision variant is NP complete, is de-
noted NP hard.

Does a polynomial algorithm for a decision
problem imply a polynomial algorithm for the
optimization or evaluation variant? For that, we
need to prove the reversal of Equation 11:

P(O) ≤ P(E) ≤ P(D). (12)

P(E) ≤ P(D) can be shown to hold if the opti-
mum solution’s cost is an integer with logarithm
bounded by a polynomial in the input’s size.
The corresponding polynomial reduction eval-
uates the optimal cost c* by asking, “Is c* ≤ B?”
for a sequence of values B that approaches c*
(similar to the bisection method for finding a
function’s zeroes).

There is no general method to prove P(O) ≤
P(E), but a strategy that often works for the TSP is
this: Let c* be the known solution of TSP(E). Re-
place an arbitrary entry dij of the distance matrix
with a value c > c* and solve TSP(E) with this mod-
ified distance matrix. If this modification doesn’t
affect the tour’s optimum length, the link ij does
not belong to the optimal tour. Repeating this pro-
cedure for different links, we can reconstruct the
optimum tour with a polynomial number of calls
to a TSP(E) solver; hence, TSP(O) ≤ TSP(E).

Counting problems. So far, we have studied two
related styles of problems: Decision problems
ask whether a desired solution exists, and opti-
mization problems require that a solution be
produced. A third important and fundamentally
different kind of problem asks how many solu-
tions exist. The counting variant of SAT reads

#SAT: Given a Boolean expression, compute
the number of different truth assignments that
satisfy it.

Similarly, #Hamiltonian Cycle asks for the num-

ber of different Hamiltonian Cycles in a given
graph, #TSP for the number of different tours
with length ≤ B, and so on.

Definition: A counting problem #P is a pair (F,
d), where F is the set of all feasible solutions, and
d is a decision function d: F → {0,1}. The output
of #P is the number of f ∈ F with d(f) = 1. The
class #P (pronounced “number P”) consists of
all counting problems associated with a decision
function d that can be evaluated in polynomial
time.

Like the class NP, #P collects all problems
whose sole source of intractability is the number
of feasible solutions. A polynomial algorithm for
a counting problem #P implies a polynomial al-
gorithm for the associated decision problem P:
P ≤ #P. Hence, it is unlikely that #SAT can be
solved efficiently. In fact, we can define polyno-
mial reducibility for counting problems and
prove that all problems in #P reduce polynomi-
ally to #SAT:6

Theorem: #SAT is #P complete.

As you might have guessed, #Hamiltonian Cy-
cle and #TSP are also #P complete. Despite the
similarity between NP and #P, counting prob-
lems are inherently harder than decision prob-
lems. This is documented by those #P-complete
problems for which the corresponding decision
problem can be solved in polynomial time—the
classical example being the problem of calculat-
ing a matrix’s permanent.16

Computational complexity and physics
The relationship between computation com-

plexity and physics should offer new insights,
some of which are discussed here. For example,
some knowledge of computational complexity
helps us understand the promises and limitations
of quantum computers. In addition, we can
seemingly transfer the notion of tractable and
intractable problems to the problem of analytical
solubility of models from statistical physics, ex-
plaining to some extent why, for example, the
Ising model is exactly soluble in 2D but not 3D.

Another interesting link between computa-
tion complexity and physics is that statistical
mechanics offer means for the general proba-
bilistic analysis of computational problems. In
statistical mechanics, we typically formulate an
optimization problem as a spin glass and ana-

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 43

lyze the latter’s low temperature properties.
This “physical” approach often yields results
that go beyond the results obtained by tradi-
tional methods. Another surprising observation
is the fact that random instances of intractable
problems can be solved in polynomial time. To
observe the exponential running time, the pa-
rameters of the random ensemble must be ad-
justed carefully. This scenario corresponds to a
phase transition in physical systems and is there-
fore best studied within the framework of sta-
tistical mechanics.

Quantum parallelism
There is some theoretical evidence that com-

puters using quantum systems as computational
devices are more powerful than computers based
on classical devices. The hope is that problems
that are intractable on a classical computer be-
come tractable when put on a quantum com-
puter. Results such as Peter Shor’s celebrated
quantum algorithm for factorization nurture this
hope, but a real breakthrough is still missing.

In a seminal paper, Richard Feynman pointed
out that a system of n quantum particles is expo-
nentially hard to simulate on a classical com-
puter.17 The idea of quantum computing is to re-
verse this situation and simulate a classically hard
(for example, exponential) problem in polynomial
time on a computer made of quantum devices.

A quantum computer processes qubits—quan-
tum two-state systems |0〉, |1〉. A quantum com-
puter’s key feature is that its registers can hold and
process linear superpositions of all 2n product
states of n qubits, such as

. (13)

Using this feature, constructing a quantum com-
puter capable of computing any function f(x1, ...,
xn) of n Boolean variables simultaneously for all
2n possible input values is not difficult—in the-
ory, at least. This quantum parallelism resembles
a nondeterministic algorithm with its goto both
instruction and its exponentially branching exe-
cution tree. Is quantum parallelism the key to
exponential computing power? The problem is
how to extract the exponential information out
of a quantum computer. When we defined non-
deterministic solubility, we didn’t care about how
to spot the single “yes” among the 2n “no” an-
swers. This works fine for a theoretical concept,
but for a practical computer, reading the output
really matters.

To gain the advantage of exponential paral-
lelism, we must combine it with another quantum
feature known as interference. The goal is to
arrange the computation such that constructive
interference amplifies desired result and destruc-
tive interference cancels the rest. Because of the
importance of interference phenomena, it is not
surprising that calculating the Fourier transform
was the first problem that underwent an exponen-
tial speedup: from O(n log n) on a classical to
O(log2n) on a quantum computer. This speedup
was the seed for the most important quantum al-
gorithm known today: Shor’s algorithm to factor
an integer in polynomial time.18

Although Shor’s algorithm has some conse-
quences for public key cryptography, it does not
shatter the world of NP: remember that Com-
positeness is in NP, but it is not NP complete.
Hence, the holy grail of quantum computing has
yet to be discovered—a polynomial time quan-
tum algorithm for an NP-complete problem.

Analytical solubility of Ising models
Some problems in statistical physics have been

exactly solved, but the majority of problems have
withstood the efforts of generations of mathe-
maticians and physicists. Why are some prob-
lems analytically solvable, whereas other, often
similar, problems are not? Relating this question
to the algorithmic complexity of evaluating the
partition function gives us no final answer but
helps clarify the borderline that separates ana-
lytically tractable from intractable problems.

For example, consider the Ising spin glass on a
general graph G.19 Let σ = (σ1, ..., σN) be an as-
signment of Ising spins σi = ±1 (up or down).
The energy of a configuration σ is

, (14)

where H is the external magnetic field, Ji,j are the
coupling constants, and the first summation is
over all edges in G. The fundamental problem
in statistical mechanics is to determine the par-
tition function

. (15)

Evaluating the sum directly requires O(2N) op-
erations. The notion of analytic solution has no
precise definition, but as a minimum require-
ment, we want to reduce this number from being
exponential to being polynomial in N.

Consider the well-known transfer matrix so-

Z G eN

E() ()= −∑ β σ

σ

E J Hi j i j i

ii j

() ,
,

σ σ σ σ= − − ∑∑

1

2
1 2

0

1

1 2
n n

i i i
i i i

n

| ...
, ,..., =
∑

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

44 COMPUTING IN SCIENCE & ENGINEERING

lution of the 1D Ising glass with periodic bound-
ary conditions and coupling Jk between spins σk
and σk+1 (see Figure 8):

, (16)

which can be evaluated in O(N) elementary op-
erations. Because any exact solution must in-
clude all numbers Jk, this is the best we can ex-
pect. In the homogeneous case Jk ≡ J, where we
can calculate the product of transfer matrices,

(17)
the evaluation complexity drops to O(log N) us-
ing fast exponentiation.

Writing the partition sum as

(18)

where the sum is over all possible energy val-
ues, it becomes obvious that calculating Z is
closely related to the #P problem of determin-
ing n(Ek). For general finite graphs G, this
problem has proven to be #P complete,20 so
there is no hope of finding an analytical solu-
tion (even in the weak sense above). This situ-
ation hardly improves if we restrict the graphs
to the more “physical” crystal lattices: com-
puting the partition function for a finite sub-
lattice of a nonplanar crystal lattice is #P com-
plete.21 This includes every crystal lattice in d >
2, the d = 2 model with next-nearest neighbor
interactions, two coupled d = 2 models, and so
forth. It also includes all models with d ≥ 2 and
external field H, because these can be trans-
formed into zero-field models on an aug-
mented graph (which is nonplanar unless
the underlying lattice graph G is 1D). Con-

structing from G is easy—just adjoin an ad-
ditional vertex (spin) σ0 to G and let the addi-
tional edges σ0σi have constant interaction en-
ergy J0,i = H. The partition function of the
augmented system reads

,

(19)
where the additional factor comes from the new
spin σ0 = ±1. From this expression, it is easy to
see that Z() equals two times the partition
function Z(G) in field H.

But where are the soluble Ising models? It has
been proven that we can evaluate the partition
function of Ising systems on planar crystal lattices
in polynomial time.22 This includes the cele-
brated Onsager solution of the square ferro-
magnet23 as well as the 1D example just pre-
sented. It turns out that we can calculate the
Ising model’s partition sum in polynomial time
for all graphs of fixed genus g.24,25 A graph has
genus g if it can be drawn on an orientable sur-
face of genus g (a sphere with g “handles” at-
tached to it) without crossing the edges. Planar
graphs have genus 0, toroidal graphs have genus
1, and so on. For the crystal lattices in d > 2, the
genus increases monotonically with the number
of spins—that is, it is not fixed.24

The mechanism for proving tractability or in-
tractability is the same in statistical mechanics as
it is in computational complexity: polynomial re-
duction. Francisco Barahona, for example, ap-
plies a reduction of the NP-hard problem Max
Cut to the Ising spin glass in 3d to proof the lat-
ter’s NP hardness.22 A reduction of the planar
Ising model to Minimum Weight Matching, on
the other hand, proofs the tractability of the for-
mer because we can solve Minimum Weight
Matching in polynomial time.

In our classification of spin systems, the na-
ture of the couplings is not significant. A frus-
trated, glassy system with random couplings Ji,j
of both signs is in the same class as the homo-
geneous ferromagnet with Ji,j ≡ J > 0 as long as
the underlying graph G is the same. In the 1D
example, we did not discriminate these cases:
they are both polynomial. This situation
changes, of course, if we consider the ground
states rather than the complete partition func-
tion. Here, the nature of the couplings matters a
lot: finding the ground states in pure ferromag-
netic systems is trivial on all lattices, whereas it
is NP hard for glassy systems with positive and
negative couplings on nonplanar lattices.22

 Ĝ

Z G e e eJ H Hi j i j i i(ˆ) [],= +()− − ∑ − ∑ ∑∑ β σ σ β σ β σ

σ

 Ĝ

 Ĝ

Z G n E ek

E

E

k

k

() () ,= −∑ β

Z

e H H e H

N
N N

J H

= + =

± −

+ − ±

−

λ λ λ

β β ββ β

 with

cosh() cosh () sinh() ,2 22 2

Z e e

e eN

J H J

J J H
k

N
k k

k k
()

()

()ring Tr=

+ −

− −
=

∏
β β

β β
1

N

σ
σσ σ1 2

3

JN
J

1
J

2

Figure 8. One-dimensional Ising spin glass with periodic boundary
conditions. We can calculate this system’s partition sum in
polynomial time.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

MAY/JUNE 2002 45

We can classify many other problems arising
in statistical physics according to the computa-
tional complexity to evaluate their partition
function.26 We can also evaluate all the prob-
lems known to have an exact solution27 in poly-
nomial time. Problems that are #P complete,
however, are unlikely to be exactly solvable.
Anyone looking for an exact solution of such a
problem should keep in mind that he or she is
simultaneously attacking TSP, Hamiltonian Cy-
cle, SAT, and all the other NP-hard problems.
In statistical mechanics, the focus is on results
for the thermodynamic limit N → ∞ rather than
for finite systems, however. It is not clear how
much of the “hardness” survives in this limit.

Probabilistic analysis of combinatorial problems
We can formally consider problems from

combinatorial optimization as models in statisti-
cal mechanics. The cost function is renamed
Hamiltonian, random instances are samples of
quenched disorder, and the formal model’s
ground states correspond to the solutions of the
optimization problems. In this way, methods de-
veloped in the framework of statistical mechan-
ics of disordered systems become powerful tools
for the probabilistic analysis of combinatorial
problems.28

Researchers have applied statistical mechan-
ics methods, for example, to the TSP,29,30 Graph
Partitioning,31 and k-SAT.32 A particularly nice
example of this approach is the analysis of As-
signment (also called Bipartite Matching): Given
an N × N matrix with nonnegative entries ai,j ≥
0, find

(20)

where the minimum is taken over all permuta-
tions σ of (1, ..., N).

A probabilistic analysis aims at calculating av-
erage properties for an ensemble of random in-
stances, the canonical ensemble being random
numbers ai,j drawn independently from a com-
mon probability density ρ(a). Using the replica
method from statistical physics, Marc Mézard
and Giorgio Parisi33 found (among other things)

, (21)

where 〈•〉 denotes averaging over the ai,j. David
Aldous recently presented34 a rigorous proof of
Equation 21, which represents one of the rare
cases where rigorous methods have confirmed a
replica result.

Some years after the replica solution, Parisi
recognized that for exponentially distributed
matrix elements (ρ(a) = e–a), the average optima
for N = 1 and N = 2 are

. (22)

From this and the fact that we can write the
replica result for N→∞ as

(23)

he conjectured35 that the average optimum for
finite systems is

. (24)

Parisi’s conjecture is supported by numerical
simulations, but no formal proof has been found
despite some efforts.36

Equations 22 and 24 only hold for ρ(a) = e–a,
whereas Equation 21 is valid for all densities
with ρ(a → 0) = 1. For the uniform density on
[0,1], the first terms are

. (25)

(If you can you guess the expression for general,
finite N in this case, please send me an email.)

Sometimes a statistical mechanics analysis not
only yields exact analytical results but also re-
veals features that are important to design and
understand algorithms. A recent example is the
analysis of the Davis-Putnam algorithm for
SAT.37 Another example is given by the number
partitioning problem (NPP), an NP-hard opti-
mization problem.38 “Physical” reasoning has led
to the conjecture that for this problem, no
heuristic algorithm can outperform simple ran-
dom search.39

Phase transitions in computational complexity
The theory of computational complexity is

based entirely on worst-case analysis. An algo-
rithm could require exponential time on patho-
logical instances only. A famous example is the
simplex method for linear programming. De-
spite its exponential worst-case complexity, it is
used in many applications to solve really large
problems. Apparently the instances that trigger
exponential running time do not appear under
practical conditions.

Linear programming is in P thanks to the El-

E E1 2

1
2

23
30

* *= =

E

kN
k

N
* =

=
∑ 1

2
1

π 2

2
16

1=
=

∞

∑ kk

E E1 2 21 1

1
2

* *= = +

lim *

N NE
→ ∞

= π 2

6

E aN i i

i

N
*

, ()min ,=
=

∑σ σ
1

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

46 COMPUTING IN SCIENCE & ENGINEERING

lipsoid algorithm,5 but similar scenarios are ob-
served for NP-hard problems. Take 3-SAT, for
example. When generating random instances
with N variables and M clauses and feeding them
to a smart but exhaustive algorithm, we observe
polynomial running time unless the ratio M/N
is carefully adjusted. If M/N is too low, the prob-
lem is underconstrained—that is, it has many sat-
isfying solutions, and a clever algorithm will find
one of these quickly. If M/N is too large, the
problem is overconstrained—that is, it has many
contradictory constraints, which, again, a clever
algorithm will discover quickly.40 The real hard
instances are generated for ratios α = M/N close
to a critical value αc.41

The transition from underconstrained to over-
constrained formulas in 3-SAT bears the hall-
marks of a phase transition in physical systems.
The control parameter is α; the order parame-
ter is the probability of the formula being satis-
fiable. Similar phase transitions do occur in var-
ious other decision or optimization problems,
and mathematical methods from statistical me-
chanics have successfully been used for their
analysis.

Reading up to this point hopefully has
convinced you that there are some in-
teresting links between physics and the
theory of computational complexity.

In fact, mathematicians, computer scientists, and
physicists have just started interdisciplinary work
in this field. Tools and notions from statistical
mechanics might shed more light on the typical
case complexity of problems and might help to
improve heuristic algorithms. Quantum com-
puting may even turn intractable problems into
tractable ones some day. A polynomial time al-
gorithm for an NP-complete problem would be
a real breakthrough—a theoretical breakthrough
first of all, but in the far future, quantum com-
puters might be available as hardware. If this re-
ally happens, computational complexity and
physics will no longer be considered separate
fields.

References
1. D. Coppersmith and S. Winograd, “Matrix Multiplication via

Arithmetic Progressions,” J. Symbolic Computation, vol. 9, no. 3,
1990, pp. 251–280.

2. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Al-
gorithms: The MIT Electrical Engineering and Computer Science Se-
ries, MIT Press, Cambridge, Mass., 1990.

3. B. Bollobás, Modern Graph Theory, Graduate Texts in Mathe-
matics, vol. 184, Springer-Verlag, Berlin, 1998.

4. G. Reinelt, “The Traveling Salesman,” Computational Solutions
for TSP Applications, Lecture Notes in Computer Science, vol. 840,
Springer-Verlag, Berlin, 1994.

5. C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization,
Prentice-Hall, Englewood Cliffs, N.J., 1982.

6. L. Euler, “Solutio Problematis Ad Geometrian Situs Pertinentis,”
Commetarii Academiae Scientiarum Imperialis Petropolitanae, vol.
8, 1736, pp. 128–140.

7. H.R. Lewis and C.H. Papadimitriou, “The Efficiency of Algo-
rithms,” Scientific American, vol. 109, no. 1, Jan. 1978, pp.
96–109.

8. V. Kumar, “Algorithms for Constraint Satisfaction Problems: A
Survey,” AI Magazine, vol. 13, no. 1, 1992, pp. 32–44; ftp://
ftp.cs.umn.edu/dept/users/kumar/csp-aimagazine.ps.

9. B. Aspvall, M.F. Plass, and R.E. Tarjan, “A Linear-Time Algorithm
for Testing the Truth of Certain Quantified Boolean Formulas,”
Information Processing Letters, vol. 8, no. 3, 1979, pp. 121–123.

10. D.S. Johnson and C.H. Papadimitriou, “Computational Com-
plexity,” The Traveling Salesman Problem, Lawler et al., eds.,
1985, pp. 37–85.

11. V.R. Pratt, “Every Prime has a Succinct Certificate,” SIAM J. Com-
puting, vol. 4, no. 3, 1975, pp. 214–220.

12. G. Ausiello et al., Complexity and Approximation, Springer-Verlag,
Berlin, 1999.

13. R.M. Karp, “Complexity of Computer Computations,” Reducibil-
ity Among Combinatorial Problems, R.E. Miller and J.W. Thatcher,
eds., Plenum Press, New York, 1972, pp. 85–103.

14. S. Cook, “The Complexity of Theorem Proving Procedures,” Proc.
3rd Ann. ACM Symp. Theory of Computing, ACM Press, New York,
1971, pp. 151–158.

15. R.E. Ladner, “On the Structure of Polynomial Time Reducibility,”
J. ACM, vol. 22, no. 1, 1975, pp. 155–171.

16. L.G. Valiant, “The Complexity of Computing the Permanent,”
Theoretical Computer Science, vol. 8, 1979, pp. 189–201.

17. R. Feynman, “Simulating Physics with Computers,” Int’l J. Theo-
retical Physics, vol. 21, nos. 6 and 7, 1982, pp. 467–488.

18. P.W. Shor, “Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer,” SIAM J.
Computing, vol. 26, no. 5, 1997, pp. 1484–1509.

19. B. Hayes, “Computing Science: The World in a Spin,” American
Scientist, vol. 88, no. 5, Sept./Oct. 2000, pp. 2384–388; www.
amsci.org/amsci/issues/comsci00/compsci2000-09.html.

20. F. Jaeger, D.L. Vertigan, and D.J.A. Welsh, “On the Computa-
tional Complexity of the Jones and Tutte Polynomials,” Mathe-
matical Proc. Cambridge Philosophical Soc., vol. 108, 1990, pp.
35–53.

21. S. Istrail, “Statistical Mechanics, Three-Dimensionality and NP-
Completeness,” Proc. 31st ACM Ann. Symp. Theory of Computing
(STOC 2000), ACM Press, New York, 2000, pp. 87–96.

22. F. Barahona, “On the Computational Complexity of Ising Spin
Glass Models,” J. Physics A: Mathematical and General, vol. 15,
vol. 10, 1982, pp. 3241–3253.

23. L. Onsager, “Crystal Statistics I: A Two-Dimensional Model with
an Order-Disorder Transition,” Physical Rev., vol. 65, 1944, pp.
117–149.

24. T. Regge and R. Zecchina, “Combinatorial and Topological Ap-
proach to the 3D Ising Model,” J. Phys. A, vol. 33, 2000, pp.
741–761.

25. A. Galluccio, Martin Loebl, and Jan Vondrák, “New Algorithm for
the Ising Problem: Partition Function for Finite Lattice Graphs,”
Physical Rev. Letters, vol. 84, no. 26, 2000, pp. 5924–5927.

26. D.J.A. Welsh, “The Computational Complexity of Some Classi-
cal Problems from Statistical Physics,” Disorder in Physical Sys-

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

tems, G.R. Grimmett and D.J.A. Welsh, eds., Clarendon Press,
Oxford, 1990, pp. 307–321.

27. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Acade-
mic Press, San Diego, 1982.

28. M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and
Beyond, World Scientific, Singapore, 1987.

29. M. Mézard and G. Parisi, “Mean-Field Equations for the Match-
ing and the Traveling Salesman Problems,” Europhys. Letters, vol.
2, no. 12, Dec. 1986, pp. 913–918.

30. W. Krauth and M. Mézard, “The Cavity Method and the Travel-
ing-Salesman Problem,” Europhys. Lett., vol. 8, no. 3, 1989, pp.
213–218.

31. Y. Fu and P.W. Anderson, “Application of Statistical Mechanics to
NP-Complete Problems in Combinatorial Optimization,” J.
Physics A: Mathematical and General, vol. 19, 1986, pp.
1605–1620.

32. R. Monasson and Riccardo Zecchina, “Statistical Mechanics of
the Random k-Satisfiability Model,” Phys. Rev. E, vol. 56, no. 2
Aug. 1997, pp. 1357–1370.

33. M. Mézard and G. Parisi, “Replicas and Optimization,” J. Physique
Letters, vol. 46, 1985, pp. L771–L778.

34. D. J. Aldous, “The ζ(2) Limit in the Random Assignment Prob-
lem,” Random Structures & Algorithms, vol. 18, no. 4, July 2001,
pp. 381–418.

35. G. Parisi, A Conjecture on Random Bipartite Matching, 1998;
http://xxx.lanl.gov/PS_cache/cond-mat/pdf/9801/9801176.pdf.

36. D. Coppersmith and G. Sorkin, “Constructive Bounds and Exact
Expectations for the Random Assignment Problem,” Random
Structures and Algorithms, vol. 15, no. 2, 1999, pp. 113–144.

37. S. Cocco and R. Monasson, “Statistical Physics Analysis of the
Computational Complexity of Solving Random Satisfiability Prob-
lems using Backtrack Algorithms,” European Physics J. B, vol. 22,

2001, pp. 505–531.

38. B. Hayes, “Computing Science: The Easiest Hard Problem,”Amer-
ican Scientist, vol. 90, no. 2, Mar./Apr. 2002, pp. 113–117;
www.amsci.org/amsci/issues/comsci02/compsci2002-03.html.

39. S. Mertens, “Random Costs in Combinatorial Optimization,”
Physical Rev. Letters, vol. 84, no. 7, Feb. 2000, pp. 1347–1350.

40. B. Hayes, “Computing Science: Can’t Get No Satisfaction,” Amer-
ican Scientist, vol. 85, no. 2, Mar./Apr. 1997, pp. 108–112;
www.amsci.org/amsci/issues/Comsci97/compsci9703.html.

41. R. Monasson et al., “Determining Computational Complexity
from Characteristic ‘Phase Transitions,’” Nature, vol. 400, July
1999, pp. 133–137.

Stephan Mertens is a teaching and research assistant at
the Institute for Theoretical Physics, University of Magde-
burg. His fields of research are statistical mechanics of
hard optimization problems, phase transitions in com-
putational complexity, and parallel algorithms. He runs
the Institute’s computing machinery, including a 156-
node Beowulf cluster. He received his PhD in theoretical
physics from Göttingen University. Contact him at Otto-
von-Guericke Univ., Inst. f. Theor. Physik, Otto-von-Gu-
ericke Univ., PF 4120, D-39016 Magdeburg, Germany;
stephan.mertens@physik.uni-magdeburg.de.

For more information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

What is Computing in
Science & Engineering
magazine?

Computing in Science & Engineering is a joint publication of the IEEE Computer Society and the American Institute of Physics

www.aip.org
http://computer.org

®
.

May/June 2001

FOR

Electrical Engineers

Physicists

Chemists

and others...

SUBSCRIBE TODAY!Visit www.computer.org/cise
or http://ojps.aip.org/cise

CiSE is a peer-reviewed, joint

publication of the IEEE Computer Society and

the American Institute of Physics. It represents

the merger of two first-rate scientific publica-

tions—AIP’s Computers in Physics and IEEE

Computational Science & Engineering.

Now electrical engineers, physicists, chemists,

and others have a magazine that covers a

broad range of topics, emphasizing the com-

mon techniques and practical lessons that are

portable from one area of CSE to another. CiSE

is the leading interdisciplinary forum for those

who call themselves computational scientists

or engineers, or who have an interest in the

subject. Specialists from many areas find it

highly readable and accessible.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on April 30, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

