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TOPICS IN RADIO COMMUNICATIONS

INTRODUCTION

Current data networking technology limits a net-
work’s ability to adapt, often resulting in sub-
optimal performance. Limited in state, scope
and response mechanisms, the network elements
(consisting of nodes, protocol layers, policies,
and behaviors) are unable to make intelligent
adaptations. Communication of network state
information is stifled by the layered protocol
architecture, making individual elements
unaware of the network status experienced by
other elements. Any response that an element
may make to network stimuli can only be made
in the context of its limited scope. The adapta-
tions that are performed are typically reactive,
taking place after a problem has occurred. In
this article we advance the idea of cognitive net-
works, which have the promise to remove these
limitations by allowing networks to observe, act,
and learn in order to optimize their perfor-
mance.

Cognitive networks are motivated by com-
plexity. Particularly in wireless networks, there
has been a trend towards increasingly complex,
heterogeneous, and dynamic environments.
While wired networks can also take on any of
these characteristics, and are not excluded
from potential cognitive network applications,
because of the internode interactions and the

size of the system state space, wireless net-
works are a natural focus of research in com-
plex networks. Previous wireless research into
cognitive radio and crosslayer design have
addressed some of these issues, but have short-
comings from the network perspective. Cogni-
tive networks represent a new scope and
approach to dealing with this complexity. This
article is written to provide the reader with a
primer on the cognitive network concept, as
envisioned by the authors. As such, it begins by
first explaining the need for cognitive net-
works,  how they are defined, and possible
applications for the technology. Then the arti-
cle examines how cognitive networks are relat-
ed to,  but distinct from, previous work in
cognitive radios and cross-layer design. A prac-
tical discussion of the implementation of a cog-
nitive network and important areas of future
work closes the article.

DEFINITION
We suggest the following definition for a cogni-
tive network, first described by us in [1]: A cog-
nitive network is a network with a cognitive
process that can perceive current network condi-
tions, and then plan, decide, and act on those
conditions. The network can learn from these
adaptations and use them to make future deci-
sions, all while taking into account end-to-end
goals.

The cognitive aspect of this definition is simi-
lar to that used to describe cognitive radio and
broadly encompasses many simple models of
cognition and learning. More critical to the defi-
nition are the network and end-to-end aspects.
Without the network and end-to-end scope, the
system is perhaps a cognitive radio or layer, but
not a cognitive network. Here, end-to-end
denotes all the network elements involved in the
transmission of a data flow. For a unicast trans-
mission, this might include the subnets, routers,
switches, virtual connections, encryption
schemes, mediums, interfaces, or waveforms, to
mention just a few. The end-to-end goals are
what gives a cognitive network its network-wide
scope, separating it from other adaptation
approaches, which have only a local, single ele-
ment scope.
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In this article we advance the idea of a cogni-
tive network, capable of perceiving current net-
work conditions and then planning, learning, and
acting according to end-to-end goals. Cognitive
networks are motivated by the complexity, het-
erogeneity, and reliability requirements of
tomorrow’s networks, which are increasingly
expected to self-organize to meet user and appli-
cation objectives. We compare and contrast cog-
nitive networks with related research on
cognitive radios and cross-layer design. By defin-
ing cognitive networks, examining their relation-
ship to other technologies, discussing critical
design issues, and providing a framework for
implementation, we aim to establish a founda-
tion for further research and discussion.
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MOTIVATION AND REQUIREMENTS

The overall goal of any technology is that it
meet some need in the best way possible for the
least cost. With the first half of this goal in
mind, a cognitive network should provide, over
an extended period of time, better end-to-end
performance than a noncognitive network. Cog-
nition can be used to improve the performance
of resource management, quality of service
(QoS), security, access control, or many other
network goals. Cognitive networks are only limit-
ed in application by the adaptability of the
underlying network elements and the flexibility
of the cognitive process.

In examining the second half of this goal, the
cost (in terms of overhead, architecture, and
operation) must justify the performance. In
almost all cases, implementing a cognitive net-
work requires a system that is more complex
than a noncognitive network. Thus for cognitive
networks to be justifiable, the performance
improvement must outweigh these additional
costs. For certain environments, such as static
wired networks with predictable behavior, it may
not make sense to convert to cognitive behav-
iors. Other environments, such as heterogeneous
wireless networks, may be ideal candidates for
cognition.

Cognitive networks should use observations
(or proxy observations) of network performance
as input to a decision-making process and then
provide output in the form of a set of actions
that can be implemented in the modifiable ele-
ments of the networks. Ideally, a cognitive net-
work should be forward-looking, rather than
reactive, and attempt to adjust to problems
before they occur. Additionally, the architecture
of a cognitive network should be extensible and
flexible, supporting future improvements, net-
work elements, and goals.

Cognitive networks require a software adapt-
able network (SAN) to implement the actual
network functionality and allow the cognitive
process to adapt the network. Similarly to cogni-
tive radio, which depends on software defined
radio (SDR) to modify aspects of radio opera-
tion (e.g. time, frequency, bandwidth, code, spa-
tiality, waveform), a SAN depends on a network

that has one or more modifiable elements. Prac-
tically, this means that a network must be able to
modify one or several layers of the network
stack in its member nodes. A simple example of
a SAN could be a wireless network with direc-
tional antennas (antennas with the ability to
direct their maximum receive or transmit gain to
various points of rotation). A more complex
example would incorporate more modifiable
aspects at various layers of the protocol stack,
such as MAC adaptations or routing control.

A SIMPLE EXAMPLE
As an example of the need for end-to-end rather
than just link adaptations, consider an ad hoc
data session between a source node, S1, and a
destination node D1 as shown in Fig. 1. The
source node must route traffic through interme-
diate nodes R1 and R2 acting as regenerative
relays. Node S1 performs a link adaptation by
choosing the relay node based on the set of min-
imum hop routes to D1 and the probability of
link outage. Based on the simple network in Fig.
1, nodes R1 and R2 are both in the set of mini-
mum hop relays on routes to D1. Therefore,
node S1 selects the link on which to transmit by
observing the outage probabilities on the links to
R1 and R2 and selecting the link with the lower
outage probability. From the standpoint of the
link layer in node S1, this guarantees that the
transmitted packets have the highest probability
of arriving correctly at the relay node. However,
it does not guarantee anything about the end-to-
end performance, that is, the total outage proba-
bility from S1 to D1.

In contrast to the link adaptation, the cogni-
tive network uses observations from all nodes to
compute the total path outage probabilities from
S1 to D1 through R1 and R2. This shows the ben-
efit of a more global view, but there is another
advantage to the cognitive network, the learning
capability. Suppose that the learning mechanism
measures throughput from the source to its des-
tination in order to judge the effectiveness of
previous decisions, and suppose that nodes S1
and S2 are both routing their traffic through R2
because this satisfies the minimum outage prob-
ability objective.

Now suppose that R2 becomes congested
because of a large volume of traffic coming
from S2. This becomes apparent to the cogni-
tive process in the throughput reported by S1
and S2. The learning mechanism recognizes
that the prior solution is no longer optimal and
directs the cognitive process toward another
solution. The cognitive network does not
explicitly know that there is congestion at node
R2 because we have not included this as an
observation. Nevertheless, it is able to infer
from the reduced throughput that there may be
a problem. It is then able to respond to the
congestion, perhaps by routing traffic through
R1 and/or R3.  This example i l lustrates the
potential of cognitive networks in optimizing
end-to-end performance as well as reacting to
unforeseen circumstances. The cognitive net-
work goes beyond the purely algorithmic
approach of the underlying routing protocol
and finds efficient operating points even when
unexpected events occur.

n Figure 1. Simple relay network.
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FOUNDATIONS AND RELATED WORK

Having defined a cognitive network, it is helpful
to review some existing research areas related to
the cognitive network concept. We take a look at
two areas in particular, cognitive radio and
cross-layer design. We also examine other cur-
rent research into the cognitive network concept.

COGNITIVE RADIO
Shared Attributes with Cognitive Networks
— The 50 percent correlation in nomenclature
would of itself imply some degree of commonali-
ty, and it can certainly be argued that research in
cognitive radio has sparked the formulation of
the cognitive network concept. What cognitive
radios and cognitive networks do share is the
cognitive process that is the heart of the perfor-
mance optimizations. An essential part of the
cognitive process is the capability to learn from
past decisions and use this learning to influence
future behavior. Both are goal-driven and rely
on observations paired with knowledge of node
capabilities to reach decisions. Knowledge in
cognitive radio is contained within a modeling
language such as radio knowledge representation
language (RKRL) [2]. A network-level equiva-
lent must exist for the cognitive network to be
goal oriented and achieve context awareness,
two attributes which it shares with a cognitive
radio. A cognitive radio requires tunable param-
eters which define the optimization space of the
cognitive process. These tunable parameters are
ideally provided by SDR. The concept of the
SAN is the cognitive network analog of SDR.
Therefore, both technologies employ a software
tunable platform that is controlled by the cogni-
tive process. 

Differences from Cognitive Networks —
Cognitive networks are clearly delineated from
cognitive radios by the scope of the controlling
goals. Goals in a cognitive network are based on
end-to-end network performance, whereas cog-
nitive radio goals are localized only to the radio’s
user. These end-to-end goals are derived across
the network from operators, users, applications,
and resource requirements. This difference in
goal scope from local to end-to-end enables the
cognitive network to operate more easily across
all layers of the protocol stack. Current research
in cognitive radio emphasizes interactions with
the physical layer, which limits the direct impact
of changes made by the cognitive process to the
radio itself and other radios to which it is direct-
ly linked. Agreement with other radios on
parameters which must match for successful link
communication is reached through a process of
negotiation. Since changes in protocol layers
above the physical layer tend to impact more
nodes in the network, the cognitive radio negoti-
ation process would have to be expanded to
include all nodes impacted by the change. How-
ever, because the negotiation process is unable
to assign precedence to radios’ desires without
goals of a broader scope, achieving agreement
among multiple nodes may be a slow process.
For the same reason, the compromise can be
expected to result in suboptimal network perfor-
mance. In contrast, cognitive networks are more

cooperative in nature, since the performance is
referenced to the end-to-end goals and nodes
within a single cognitive element must cooperate
to enact decisions.

Another significant difference between cogni-
tive radios and cognitive networks is the degree
of heterogeneity that is supported. Cognitive
networks are applicable to both wired and wire-
less networks, whereas cognitive radios of course
apply only to wireless networks. Since the cogni-
tive network may span multiple wired and wire-
less mediums, it is useful for optimizing
performance for these heterogeneous types of
networks, which are generally difficult to inte-
grate.

The fact that a cognitive network is com-
posed of multiple nodes also adds a degree of
freedom in how the cognitive processing is per-
formed compared to cognitive radio. A cognitive
network has the option to implement a central-
ized cognitive process, a fully distributed cogni-
tive process, or a partially distributed cognitive
process.

CROSS-LAYER DESIGN
Shared Attributes with Cross-Layer Design
— Designs that violate the traditional layered
approach by direct communication between non-
adjacent layers or sharing of internal informa-
tion between layers are called cross-layer designs
[3]. Cognitive networks indirectly share informa-
tion that is not available externally in the strict
layered architecture. Therefore, cognitive net-
works do perform cross-layer design.

The common theme is that observations are
made available externally and some adaptation is
performed at a layer other than the layer provid-
ing the observation. In a cognitive network, pro-
tocol layers provide observations of current
conditions to the cognitive process. The cogni-
tive process then determines what is optimal for
the network and changes the configurations of
network elements’ protocol stacks.

Differences from Cross-Layer Design —
Despite similarities, cognitive networks reach far
beyond the scope of cross-layer designs. The
cognitive network must support trade-offs
between multiple goals and in order to do so
performs multi-objective optimizations (MOO),
whereas cross-layer designs typically perform sin-
gle objective optimizations. Cross-layer designs
perform independent optimizations that do not
account for the network-wide performance goals.
Trying to achieve each goal independently is
likely to be suboptimal, and as the number of
cross-layer designs within a node grows, conflicts
between the independent adaptations may lead
to adaptation loops [4]. This pitfall is avoided in
a cognitive network by jointly considering all
goals in the optimization process.

The ability to learn is another significant dif-
ference. The cognitive network learns from prior
decisions and applies the learning to future deci-
sions. Cross-layer designs are memoryless adap-
tations that will respond the same way when
presented with the same set of inputs, regardless
of how poorly the adaptation may have per-
formed in the past. The ability to learn from
past behavior is particularly important in light of
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the fact that our understanding of the interac-
tion between layers is limited.

Again, the scope of the goals and observa-
tions sets cognitive networks apart from cross-
layer design. The observations used by the
cognitive process span multiple nodes and the
optimization is performed with the goals of all
nodes in mind whereas cross-layer design is
node-centric. This global information allows the
cognitive process to adapt in ways which simply
are not possible when nodes have limited visibili-
ty into the state of other nodes in the network,
as is the case with cross-layer design.

COGNITIVE NETWORKS
This article is the first to provide a comprehen-
sive investigation of the motivations, architec-
ture, and design of cognitive networks. However,
other work exists in the literature that is related
to the cognitive network concept. Perhaps the
first mention of a cognitive network-like concept
was in the article by Clark et al. on the network
knowledge plane, which they define as a “perva-
sive system within the network that builds and
maintains high level models of what the network
is supposed to do” [5]. Our work in [1] was the
first to define the term “cognitive network” and
examine its functionality. More recently, the
End-to-End Reconfigurability Project II (E2R
II) [6], m@ANGEL platform [7], CTVR at Trin-
ity College [8], and the Institute for Wireless
Networks at RWTH Aachen University [9] have
proposed architectures at various degrees of
maturity for end-to-end oriented, autonomous
networks. Unlike the general, bottom-up
approach that this work uses, these architectures

are typically more focused on a particular appli-
cation (such as 4G cellular or wireless), imple-
mentation (such as the cognitive mechanism or
associated APIs), or problem (such as mobility
or management).

IMPLEMENTATION
In order to synthesize the preceding concepts
and components into an actual cognitive net-
work, we investigate how a cognitive network
should be implemented. We construct a frame-
work for the cognitive process and identify the
critical features of this architecture.

A common model of cognition is the three-level
theory [10]. The model is often summarized as con-
sisting of behavioral, functional, and physical layers.
The behavioral level determines what observable
actions the system produces, the functional layer
determines how the system processes the informa-
tion provided to it, and the physical layer comprises
the neuro-physiology of the system.

From this concept, we draw a three-layer
framework, with each layer corresponding rough-
ly to the layers in the model described above. At
the top layer are the goals of the system and ele-
ments in the network that define the behavior of
the system. These goals feed into the cognitive
process, which computes the actions the system
takes. The SAN is the physical control of the sys-
tem, providing the action space for the cognitive
process. This framework is illustrated in Fig. 2.

In our framework we consider the possibility
of a cognitive process consisting of one or more
cognitive elements, operating in some degree
between autonomy and full cooperation. If there

n Figure 2. The cognitive framework and critical design issues.
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is a single cognitive element, it may still be phys-
ically distributed over one or more nodes in the
network. If there are multiple elements, they
may be distributed over a subset of the nodes in
the network, on every node in the network, or
several cognitive elements may reside on a single
node. In this respect, the cognitive elements
operate in a manner similar to a software agent.

USER/APPLICATION/RESOURCE REQUIREMENTS
The top-level component of the cognitive net-
work framework includes the end-to-end goals,
cognitive specification language (CSL), and cog-
nitive element goals. The end-to-end goals,
which drive the behavior of the entire system,
are put forth by the network users, applications
or resources. Without end-to-end goals guiding
network behavior, undesired consequences may
arise. This is a problem with many crosslayer
designs and is explored in some depth in [4],
which illustrates unintended end-to-end interac-
tions in a MAC/PHY cross-layer design.

Like most engineering problems, there is likely
to be a trade-off for every goal optimized on.
When a cognitive network has multiple objectives
it will not be able to optimize all metrics indefi-
nitely, eventually reaching a point in which one
metric cannot be optimized without affecting
another. In order to determine the correct Pareto
optimal front (the set of actions from which no
goal can be improved without worsening another),
each cognitive element must have an understand-
ing of all end-to-end goals and their constraints.

To connect the goals of the top-level users of
the network to the cognitive process, an interface
layer must be developed. In a cognitive network,
this role is performed by the CSL, which provides
behavioral guidance to the elements by translat-
ing the end-end goals to local element goals. Less
like the RKRL proposed by Mitola for cognitive
radio and more like a QoS specification language
[11], the CSL maps end-to-end requirements to
underlying mechanisms. Unlike a QoS specifica-
tion language, the mechanisms are adaptive to
the network capabilities as opposed to fixed. Fur-
thermore, a CSL must be able to adapt to new
network elements, applications and goals, some
of which may not even be imagined yet. Other
requirements may include support for distributed
or centralized operation, including the sharing of
data between multiple cognitive elements.

The scope of the cognitive network is broader
than that of the individual network elements; it
operates within the scope of a data flow, which
may include many network elements. For a dis-
tributed cognitive process, the cognitive ele-
ments associated with each flow or network
element may act selfishly and independently (in
the context of the entire network) to achieve
local goals, or act in a altruistic manner to
achieve network-wide goals. The job of convert-
ing the end-to-end goals to these local element
goals is often a difficult problem.

An interesting question is how much of a per-
formance difference there is between these two
modes (altruistic and selfish) of operation. The
performance difference between cognitive ele-
ments following selfish, local goals and acting in
an altruistic, network-wide mode of operation is
called the price of anarchy in [12]. Here, the term

was defined as the difference in performance
between a network run by an all-knowing benev-
olent dictator (that can specify the “correct solu-
tion” for current flows to achieve optimal
performance) and one governed purely by selfish
anarchy. The concept of the price of anarchy in
a larger sense will guide the development of cog-
nitive networks by indicating the scope in which
cognitive processes work best. If it turns out that
the network performance is significantly poorer
when acting selfishly than acting in an altruistic
manner, the cognitive network may need to pro-
vide more centralized guidance or an appropri-
ate incentive structure to the network elements.

COGNITIVE PROCESS
There does not seem to be a common, accepted
definition of what cognition means when applied
to communication technologies. The term cogni-
tive, as used in this article, follows closely in the
footsteps of the definition used by Mitola in [2]
and the even broader definition of the FCC. The
former incorporates a spectrum of cognitive behav-
iors, from goal-based decisions to proactive adap-
tation. Here, we associate cognition with machine
learning, which is broadly defined in [13] as any
algorithm that “improves its performance through
experience gained over a period of time without
complete information about the environment in
which it operates.” Underneath this definition,
many different kinds of artificial intelligence, deci-
sion making, and adaptive algorithms can be
placed, giving cognitive networks a wide scope of
possible mechanisms to use for learning.

Learning serves to complement the objective
optimization part of the cognitive process by
retaining the effectiveness of past decisions
under a given set of conditions. Determining the
effectiveness of past decisions requires a feed-
back loop to measure the success of the chosen
solution in meeting the objectives defined. This
is retained in memory, so that when similar cir-
cumstances are encountered in the future, the
cognitive process will have some idea of where
to start or what to avoid.

The effect of a cognitive process’s decisions
on the network performance depends on the
amount of network state information available to
it. In order for a cognitive network to make a
decision based on end-to-end goals, the cognitive
elements must have some knowledge of the net-
work’s current state and other cognitive element
states. If a cognitive network has knowledge of
the entire network’s state, decisions at the cogni-
tive element level should be at least as good, if
not better (in terms of the cognitive element
goals) than those made in ignorance. For a large,
complex system such as a computer network, it is
unlikely that the cognitive network would know
the total system state. There is often a high cost
to communicate this information beyond those
network elements requiring it, meaning a cogni-
tive network will have to work with less than a
full picture of the network status.

Filtering and abstraction may be used to fur-
ther reduce the amount of information that must
be exchanged and to avoid unnecessary trigger-
ing of the cognitive process. Filtering means that
observations made by the node may be held
back from the cognitive process if they are
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deemed irrelevant. Thus, the nodes themselves
make some determination of what is important
to the cognitive process. Filtering rules may be
identified at design time with additional rules
specified in real-time as the cognitive process
determines its sensitivity to various types of
observations and disseminates filtering rules
accordingly. The goal of abstraction is to reduce
the number of bits required to represent an
observation. Observations or collections of
observations made by a node are reported to the
cognitive process at a higher level of abstraction
than what is available within the node. Abstrac-
tions may also be specified at design time with
real-time adaptations by the cognitive process.
This reductionism resulting from filtering and
abstraction carries risk because it may mask
information that the cognitive process needs to
operate correctly. Therefore, care should be
taken in defining the abstractions or filtering.

There are interesting cases, however, where
selfish elements acting under the guise of igno-
rance may act in ways more optimal (in terms of
the network goals) than those with complete
information. A real-world example of this might
be a crowd leaving a theater with two exits dur-
ing a fire. One exit is short and narrow; the
other is long and wide. The management desires
to empty the theater as quickly as possible, but
each patron will take only the short exit and
ignore the long exit until they perceive that
crowding has slowed the short exit to the same
delay as the long exit. If, because of the darkness
in the theater, some patrons misread the crowd-
ing at the short exit and determine prematurely
to take the longer way out of the theater, they
will detrimentally affect their exit time (as com-
pared to the time it would have taken them to
go out the short exit). However, this may have a
positive effect on the average time for patrons to
exit (and by turn, the time to exit the entire the-
ater) since by taking the long way out prema-
turely, these patrons reduce the crowding at the
short exit and allow it to exit patrons even faster.

The performance costs (or benefits) of a dis-
tributed system knowing less than the whole
state of the system could be termed the price of
ignorance. Of course, the price of ignorance
would only account for costs due to decisions
made on insufficient information. Other issues
that might arise in systems with limited informa-
tion, such as the reduction in overhead from
reduced data collection and distribution or the
increase in critical nodes’ knowledge of impor-
tant information represent different design
issues in the engineering trade-space.

SOFTWARE ADAPTABLE NETWORK
The SAN consists of the application program-
ming interface (API), modifiable network ele-
ments, and network status sensors. The SAN is
really a separate research area, just as the design
of the SDR is separate from the development of
the cognitive radio, but at a minimum the cogni-
tive process needs to be aware of the API and
the interface it presents to the modifiable ele-
ments. Just like the other aspects of the frame-
work, the API should be flexible and extensible.
Continuing the analogy with SDRs, an existing
system that is analogous to the API is the soft-

ware communications architecture (SCA) used
in the Joint Tactical Radio System (JTRS).

Another responsibility of the SAN is to notify
the cognitive process of the status of the net-
work. To what level and detail is a function of
the filtering and abstraction being applied. The
status of the network is the source of the feed-
back used by the cognitive process, and is com-
posed of status sensor observations and
communication with other cognitive elements.
Possible observations may be local (such as bit
error rate, battery life, or data rate), nonlocal
(such as end-to-end delay and clique size), or
compilations of different local observations.

The modifiable elements can include any object
or element used in a network, although it is unlike-
ly that all elements in a SAN would be modifiable.
Each element should have public and private
interfaces to the API, allowing it to be manipulat-
ed by both the SAN and the cognitive process.
Modifiable elements are assumed to have a set of
states that they can operate in, and a “solution”
for a cognitive process consists of a set of these
states that, when taken together, meet the end-to-
end requirements of the system. At any given
instant the set of all possible combinations of
states S can be partitioned into two subsets. The
first, S′, contains all possible combinations of
states that meet the end-to-end requirements and
the second, S

–′, consists of all combinations that do
not meet these requirements. Of those in S′, some
may meet the requirements better than others,
making them preferred solutions.

A cognitive network attempts to choose a set
of states for the modifiable elements that exists in
S′. This means that should the network be in state
S
–′, or some suboptimal state in S′, the cognitive
process attempts to move the system state to an
optimal solution. With cognitive control over every
multistate element, the cognitive process can
potentially set the system to any state; an ideal
cognitive process could set the state to the optimal
solution. If the system has only a few points of
cognitive control, or chooses not to use all its con-
trol, then the cognitive process has to use the
functionality and interactions of the noncognitive
aspects of the network to set the system state.
Like the hole at the bottom of a funnel, certain
system states will be basins of attraction, pulling
the system towards them from a variety of starting
states. If a system has several attractors and some
are more optimal than others, then a few points of
cognitive control may be enough to draw the sys-
tem out of one attractor and into another. This is
analogous to a watershed, in which moving the
source of water a few miles may be enough to
change what river the water will finally flow into.
The price of control is the difference in perfor-
mance between a system that exercises full control
over the network and one that depends on the
state transitions of noncognitive elements to con-
trol aspects of the network.

FUTURE WORK AND CONCLUSION
The previous sections make a case for the “what
and why” of cognitive networks, and address
how they are designed and implemented. We
now examine major issues that need to be
addressed in order to move from concept to
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reality. Beyond the three prices of anarchy, igno-
rance, and control, which exist in any design,
there are several open-ended questions.

There is an implicit assumption in this article
that the cognitive network implements configu-
ration changes synchronously. The details of
actually making this happen with high reliability
are likely to be complex. The implications of
nodes’ switching configuration at different times
may be worse than if no adaptation had been
performed at all. Also, the varying topology of
the network means that not all nodes will receive
notification of configuration changes at the same
time. A possible approach is to require nodes to
be synchronized to some common time refer-
ence and to issue configuration changes with
respect to the time reference. However, this
adds complexity to the nodes and still does not
guarantee that messages will not be lost, result-
ing in stranded nodes. It also forces the network
to delay its adaptation to the conditions that
spawned the configuration change.

Due to the autonomy of each, there is poten-
tial conflict between what a cognitive radio and a
cognitive network each control if there is not an
integrated architecture. One approach is to turn
all control over to the cognitive network, but this
is probably unwise. The reason is that the cogni-
tive network has to limit its observations as
much as possible just to make cognitive process-
ing for a network feasible. This leaves much
detailed local information out of the cognitive
network picture. This detailed local information
may be used by the cognitive radio to further
optimize its performance outside the bounds of
what is controlled by the cognitive network. In
order to allow this, the cognitive radio must
know what it is allowed to change and what is in
the hands of the cognitive network. A potential
solution is to use the cognitive radios as cogni-
tive elements, allowing the cognitive network to
establish regulatory policy for the cognitive
radios in a real-time manner, leaving the cogni-
tive radio to perform further optimization under
these constraints.

This article has laid the groundwork for the
concept of a cognitive network and has proposed
a definition for the term. Additionally, the cog-
nitive network concept was compared against
both cognitive radio and cross-layer design.
Finally, a framework for cognitive networks was
presented, and critical themes and issues were
identified in the design and implementation of a
cognitive network. While a significant amount of
work remains to be done to make cognitive net-
works a reality, the rising complexity of networks
and the need to manage this complexity makes
the concept timely and attractive.

REFERENCES
[1] R. W. Thomas, L. A. DaSilva, and A. B. Mackenzie,

“Cognitive Networks,” Proc. IEEE DySPAN 2005, Nov.
2005, pp. 352–60.

[2] J. Mitola, Cognitive Radio: An Integrated Agent Archi-
tecture for Software Defined Radio, Ph.D. thesis, Royal
Inst. Technology, 2000.

[3] V. Srivastava and M. Motani, “Cross-Layer Design: A
Survey and the Road Ahead,” IEEE Commun. Mag., vol.
43, no. 12, 2005, pp. 112–19.

[4] V. Kawadia and P. R. Kumar, “A Cautionary Perspective
on Cross-layer Design,” IEEE Wireless Commun., vol. 12,
no. 1, 2005, pp. 3–11.

[5] D. D. Clark et al., “A Knowledge Plane for the Internet,”
Proc. SIGCOMM ’03, New York, NY, 2003, pp. 3–10.

[6] D. Bourse et al., “End-to-End Reconfigurability (E2R II):
Management and Control of Adaptive Communication
Systems,” IST Mobile Summit 2006, June 2006.

[7] P. Demestichas et al., “m@ANGEL: Autonomic Manage-
ment Platform for Seamless Cognitive Connectivity to
the Mobile Internet,” IEEE Commun. Mag., vol. 44, no.
6, June 2006, pp. 118–27.

[8] P. Sutton, L. E. Doyle, and K. E. Nolan, “A Reconfig-
urable Platform for Cognitive Networks,” Proc. CROWN-
COM 2006, 2006.

[9] P. Mähönen et al., “Cognitive Wireless Networks: Your
Network Just Became a Teenager,” Proc. IEEE INFOCOM
2006, 2006.

[10] P. N. Johnson-Laird, The Computer and the Mind,
Cambridge, MA: Harvard Univ. Press, 1988.

[11] J. Jin and K. Nahrstedt, “QoS Specification Languages for
Distributed Multimedia Applications: A Survey and Taxono-
my,” IEEE Multimedia, vol. 11, no. 3, 2004, pp. 74–87.

[12] C. H. Papadimitriou, “Algorithms, Games, and the
Internet,” Proc. STOC 2001, 2001.

[13] M. A. L. Thathachar and P. S. Sastry, Networks of
Learning Automata, Kluwer, 2004.

BIOGRAPHIES
RYAN W. THOMAS [StM] (rwthomas@vt.edu) is a doctoral
candidate in Virginia Tech’s Bradley Department of Electri-
cal and Computer Engineering. He received an M.S. in
computer engineering from the Air Force Institute of Tech-
nology at Wright-Patterson AFB, Ohio, where he was a dis-
tinguished graduate, and a B.S. from Harvey Mudd College,
Claremont, California. He previously worked at the Air
Force Research Laboratory, Sensors Directorate as a digital
array engineer. His research focuses on the design, archi-
tecture, and evaluation of cognitive networks. He is a
member of the Wireless @ Virginia Tech research group.

DANIEL H. FRIEND [StM] (dhfriend@vt.edu) is a doctoral stu-
dent in Virginia Tech’s Bradley Department of Electrical and
Computer Engineering, where he is also a Bradley Fellow.
He received B.S. and M.S. degrees in electrical engineering
from Brigham Young University, Provo, Utah, where he was
a National Merit Scholar. Following graduation he worked
for Motorola in Phoenix, Arizona for seven years, leaving as
a senior staff systems engineer. He spent the summer of
2006 at MIT Lincoln Laboratory performing research on
stochastic modeling of heterogeneous wireless ad hoc net-
works. His primary research interests are in wireless ad hoc
networks, cognitive network architecture, and distributed
computing and distributed artificial intelligence methods
for cognitive networks. He is a member of the Wireless @
Virginia Tech research group.

LUIZ A. DASILVA [SM] (ldasilva@vt.edu) joined Virginia Tech’s
Bradley Department of Electrical and Computer Engineering
in 1998, where he is now an associate professor. He received
a Ph.D. in electrical engineering at the University of Kansas
and previously worked for IBM for six years. His research
focuses on performance and resource management in wire-
less and mobile ad hoc networks. He is currently researching
the application of game theory to model MANETs, topology
control, cooperation, and reputation management in hetero-
geneous ad hoc networks, energy-aware multicast route dis-
covery, and cognitive networks. He has published more than
50 refereed papers in journals and major conferences in the
communications and computer areas. He is a member of the
Wireless @ Virginia Tech research group, the ASEE, and
ACM. In 2006 he was named a College of Engineering Facul-
ty Fellow at Virginia Tech. He frequently teaches distance
and distributed learning courses on network architecture
and protocols, and mobile and wireless networking.

ALLEN B. MACKENZIE [M] (mackenab@vt.edu) has been an
assistant professor in Virginia Tech’s Bradley Department of
Electrical and Computer Engineering since 2003. He joined
Virginia Tech after receiving a Ph.D. from Cornell University
and (in 1999) a B.Eng. from Vanderbilt University, both in
electrical engineering. His research focuses on adaptation
in wireless communications systems and networks. His cur-
rent research interests include cognitive radio and cognitive
network algorithms, architectures, and protocols, and the
analysis of cooperation in such systems and networks. He
is a member of the ASEE and ACM. In 2006 he received
the Dean’s Award for Outstanding New Assistant Professor
in the College of Engineering at Virginia Tech.

The implications of

nodes’ switching

configuration at 

different times may

be worse than if no

adaptation had been

performed at all.

Also, the varying

topology of the 

network means that

not all nodes will

receive notification

of configuration

changes at the 

same time.

THOMAS LAYOUT  11/16/06  1:20 PM  Page 57

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 5, 2009 at 17:31 from IEEE Xplore.  Restrictions apply.


