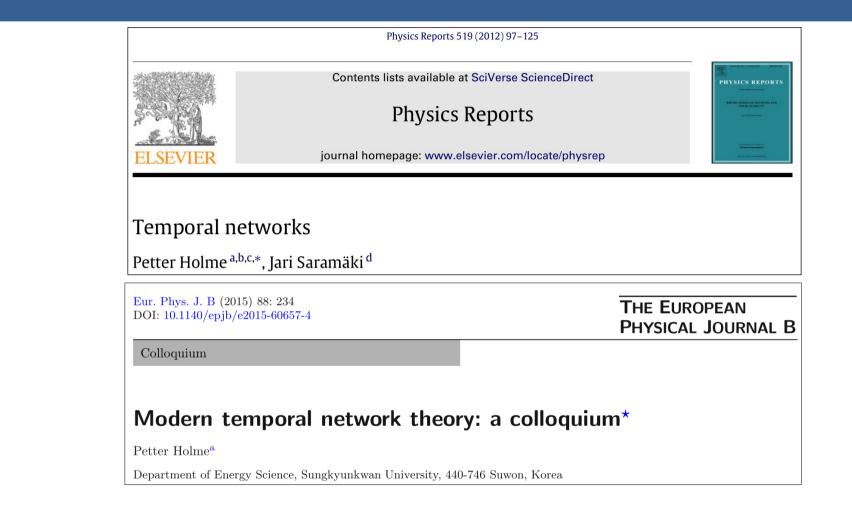
Temporal Networks aka time-varying networks, time-stamped graphs, dynamical networks...

Network Theory and Applications ECS 253 / MAE 253 Spring 2016 Márton Pósfai (posfai@ucdavis.edu)

Sources

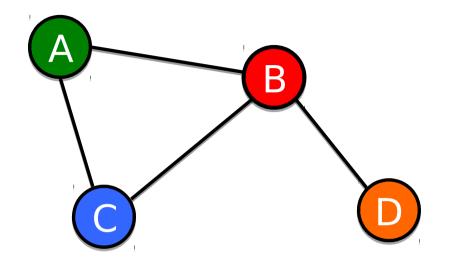
Reviews:



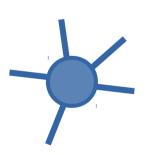
Courses:

- ENS Lyon: Márton Karsai
- Northeastern University: Nicola Perra, Sean Cornelius, Roberta Sinatra

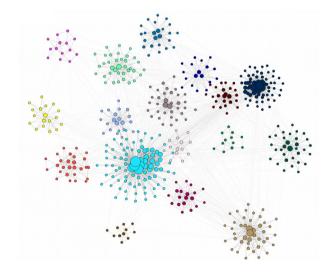
• So far: static network

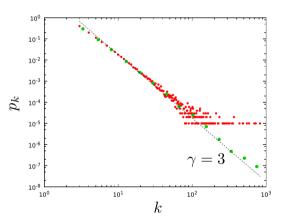


• Description:



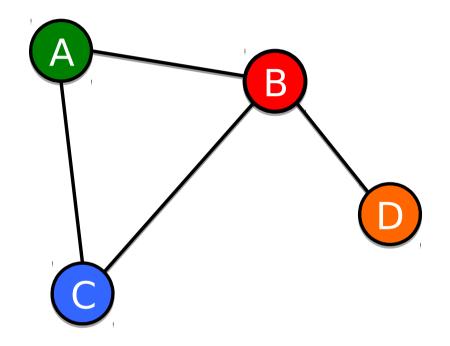
Microscopic: Node, link properties (degree, centralities)



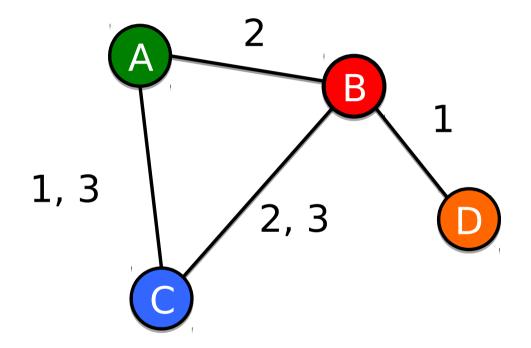


Mezoscopic: Motives, communities Macroscopic: statistics

• Static network: Spreading process can reach all nodes starting from A.

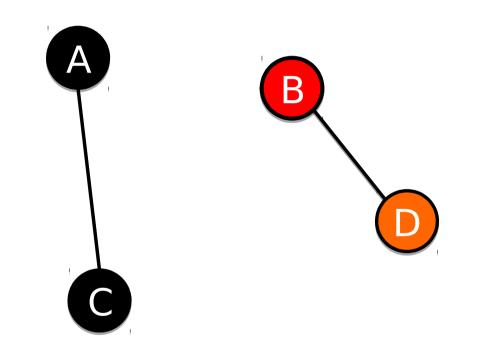


• Now: time of interaction

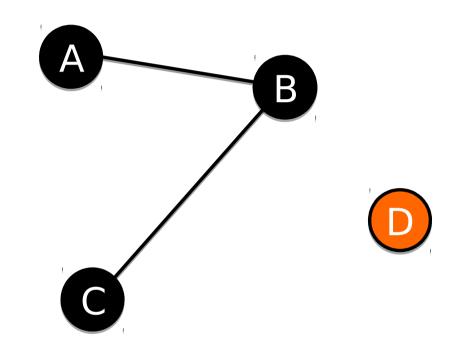


- Now: time of interaction
 - t=0

- Now: time of interaction
 - t=1

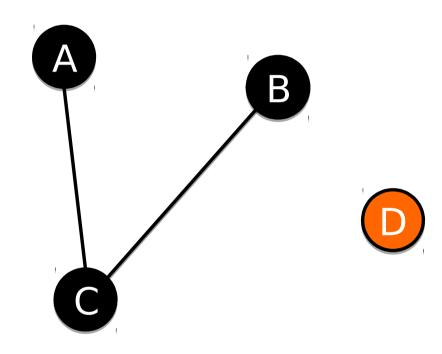


- Now: time of interaction
 - t=2



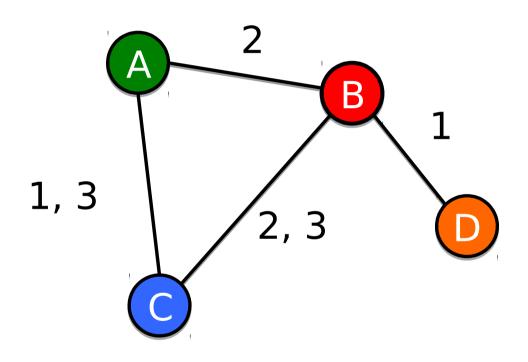
• Now: time of interaction

t=3



• Now: time of interaction

t=0



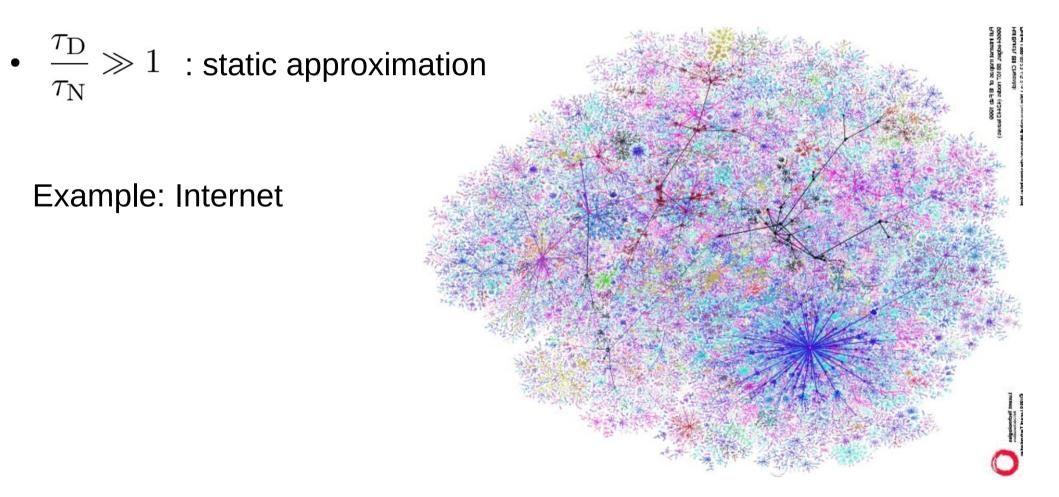
2

Microscopic: Node, link properties (degree, centralities) Mezoscopic: Motives, communities Macroscopic: statistics

When are temporal nets useful?

• Timescales:

- $\tau_{\rm D}$: timescale of dynamics
- $\tau_{\rm N}~$: timescale of changes in network

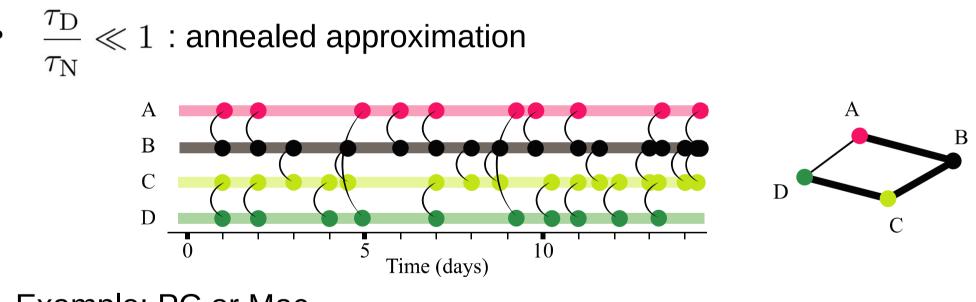


Branigan et al, Internet Computing, IEEE (2001)

When are temporal nets useful?

• Timescales:

- $\tau_{\rm D}$: timescale of dynamics
- $\tau_{\rm N}~$: timescale of changes in network



Example: PC or Mac

- Process slow enough that A meets all contacts
- Weight: how frequently they meet

P. Holme and J. Saramäki. "Temporal networks." Physics reports 519.3 (2012): 97-125.

When are temporal nets useful?

• Timescales:

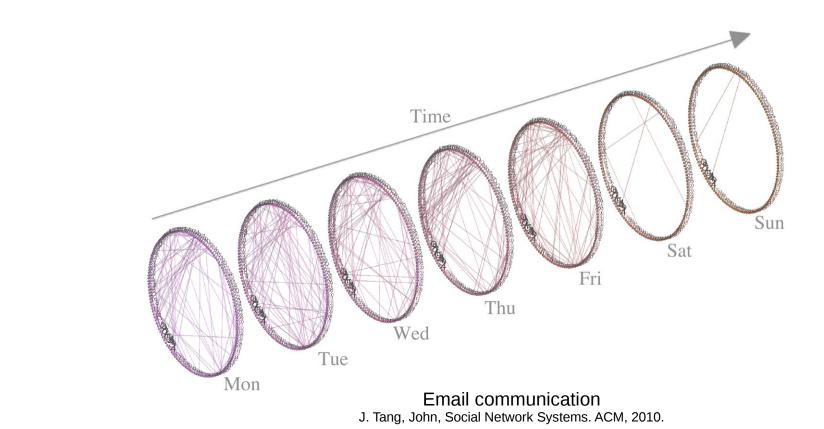
- $\tau_{\rm D}$: timescale of dynamics
- $\tau_{\rm N}~$: timescale of changes in network

• $\frac{\tau_{\rm D}}{\tau_{\rm N}} \sim 1$:

TEMPORAL NETWORKS

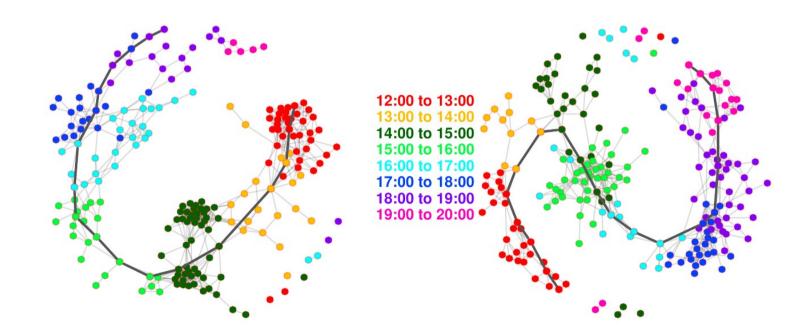
Examples

- Communication: Email, phone call, face-to-face
- Proximity: same hospital room, meet at conference, animals hanging out
- Transportation: train, flights...
- Cell biology: protein-protein, gene regulation



Examples

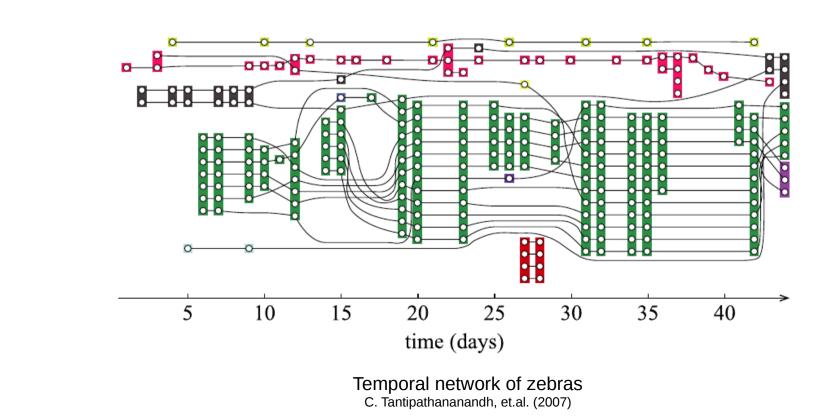
- Communication: Email, phone call, face-to-face
- Proximity: same hospital room, meet at conference, animals hanging out
- Transportation: train, flights...
- Cell biology: protein-protein, gene regulation



Visitors at exhibit. Isella, Lorenzo, et al. Journal of theoretical biology 271.1 (2011): 166-180.

Examples

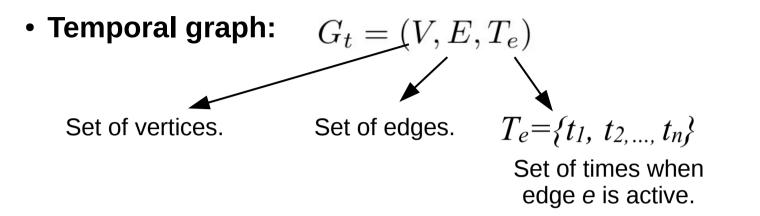
- Communication: Email, phone call, face-to-face
- Proximity: same hospital room, meet at conference, animals hanging out
- Transportation: train, flights...
- Cell biology: protein-protein, gene regulation

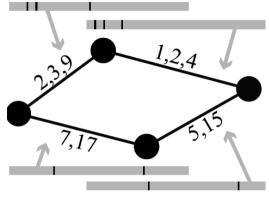


- 1) Mathematical representation
- 2) Path- based measures of temporal
- 3) Temporal heterogeneity
- 4) Processes and null models
- 5) Motifs

Mathematical Description

Mathematical representation





1. Contact sequence

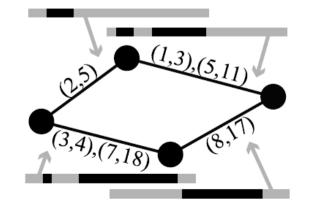
2. Adjacency matrix sequence

 $A_{ii}(t)$

 $E \subset T \times V \times V$

- Interval graph: $G_t^d = (V, E, T_e^d)$
 - $T_e^d = \{(t_1, t_1'), ..., (t_n, t_n')\}$

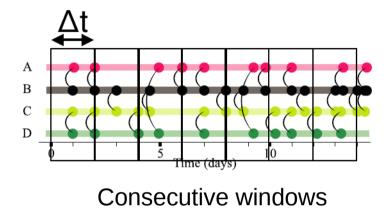
Set of intervals when edge *e* is active.

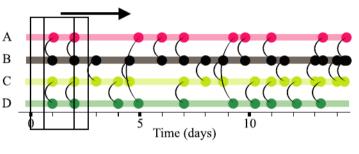


P. Holme and J. Saramäki. "Temporal networks." Physics reports 519.3 (2012): 97-125.

Aggregating in time windows

• Sequence of snapshots





Sliding windows

- Lossy method
- Sometimes data is not available
- Convenient: Static measures on snapshots \rightarrow Time series of measures
- Problem: snapshots depend on window size?
- How to choose?

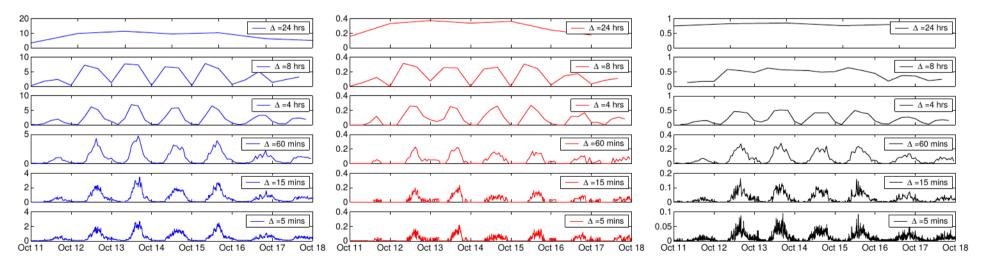
Window size?

- MIT reality mining project: high resolution proximity data
- Snapshots: $A^{(1)}, A^{(2)}, \ldots, A^{(T)}$ Time window: Δ
- Adjacency correlation:

$$\gamma_j = \frac{\sum_{i \in N(j)} A_{i,j}^{(x)} A_{i,j}^{(y)}}{\sqrt{(\sum_{i \in N(j)} A_{i,j}^{(x)}) (\sum_{i \in N(j)} A_{i,j}^{(y)})}}$$

N(j) : set of nodes that are connected to j at x of y

• 0 uncorrelated, 1 if the same



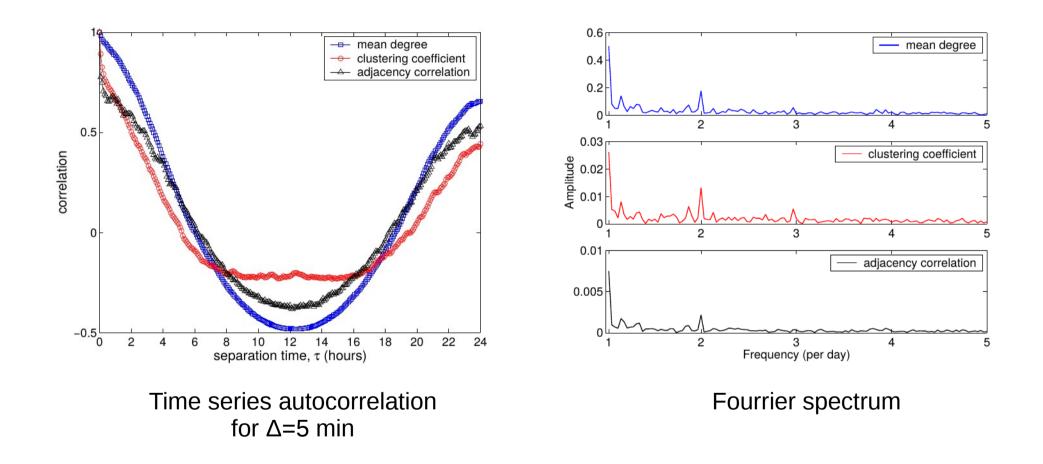
Average degree

Clustering coef.

1-Adjacency corr.

Clauset and Eagle (2012)

Window size?



Driven by periodic patterns \rightarrow Sampling rate should be twice the highest frequency $\Delta = 4$ hours

Time-respecting paths:

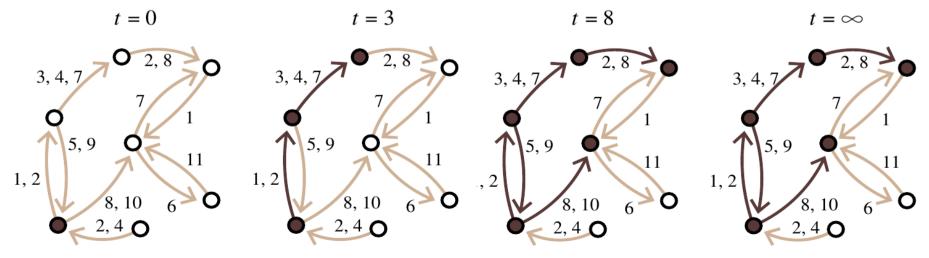
• Takes into account the temporal order and timing of contacts.

 $\{(i,k,t_1),(k,l,t_2),...,(p,j,t_n)\}$ $t_1 < t_2 < ... < t_n$

• Optional: maximum wait time

Properties:

- No reciprocity: path $i \rightarrow j$ does not imply path $j \rightarrow i$.
- No transitivity: path $i \rightarrow j$ and path $j \rightarrow k$ does not imply path $i \rightarrow j \rightarrow k$.
- **Time dependence:** path $i \rightarrow j$ that starts at *t* does not imply paths at t'>t.



P. Holme, Physical Review E 71.4 (2005)

Observation window $[t_0, t_1]$

Influence set of node *i*

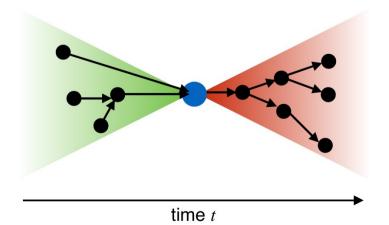
- Nodes that can be reached from node *i* within the observation window.
- Reachability ratio *f*: fraction of nodes that can be reached

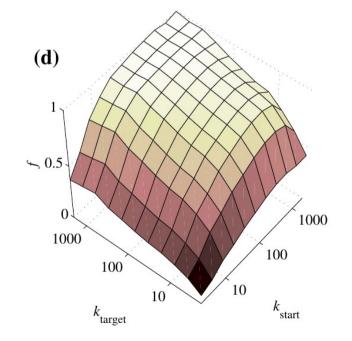
Source set of node *i*

• Nodes from node *i* is reached within the observation window.

Reachability ratio

• Fraction of node pairs (*i*,*j*) such that path $i \rightarrow j$ exists.





Temporal path length – Duration

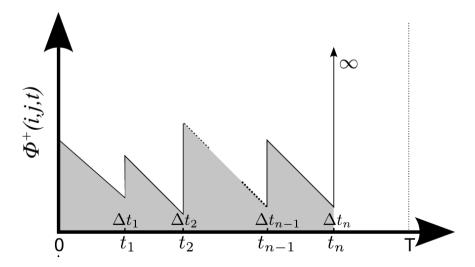
• Duration = $t_n - t_o$

Temporal distance – Latency

• $\Phi^+_{i,t}(j)$ the shortest (fastest) path duration from *i* to *j* starting at *t*.

Information latency

• $\lambda_{i,t}(j)$ the age of the information from *j* to *i* at *t*



- End of the observation window: paths become rare.
- Solution: periodic boundary, throw away end

Strongly connected component

• All node pairs are connected in both directions within *T*.

Weakly connected component

• All node pairs are connected in at least one direction within *T*.

Temporal betweenness centrality

• Static:

 $b(i) = \frac{\sum_{i \neq j \neq k} v_{jk}(i)}{\sum_{i \neq k} v_{jk}}$

Temporal:

$$b(i,T) = \frac{\sum_{i \neq j \neq k} v_{jk}(i,T)}{\sum_{j \neq k} v_{jk}(T)}$$

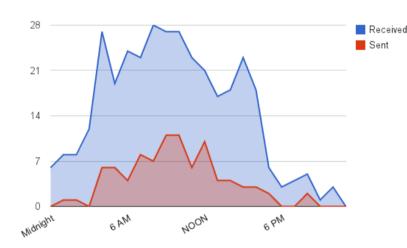
Etc.

Temporal heterogeneity

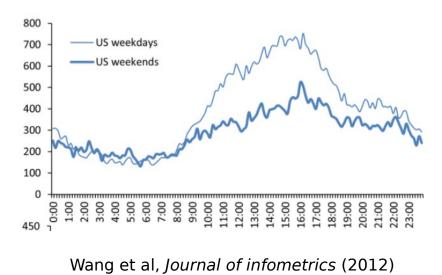
Source 1: Periodic patterns

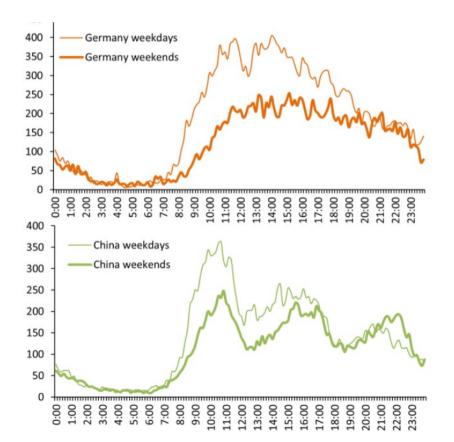
For example, circadian rythm

• My email usage



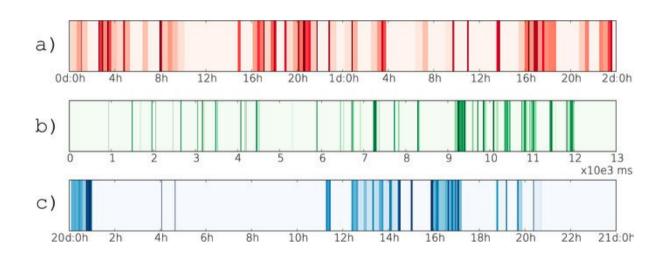
Scientists work schedule





Source 2: Burstiness

- Humans and many natural phenomena show heterogeneous temporal behavior on the individual level.
- Switching between periods of low activity and high activity bursts.
- Sign of correlated temporal behavior



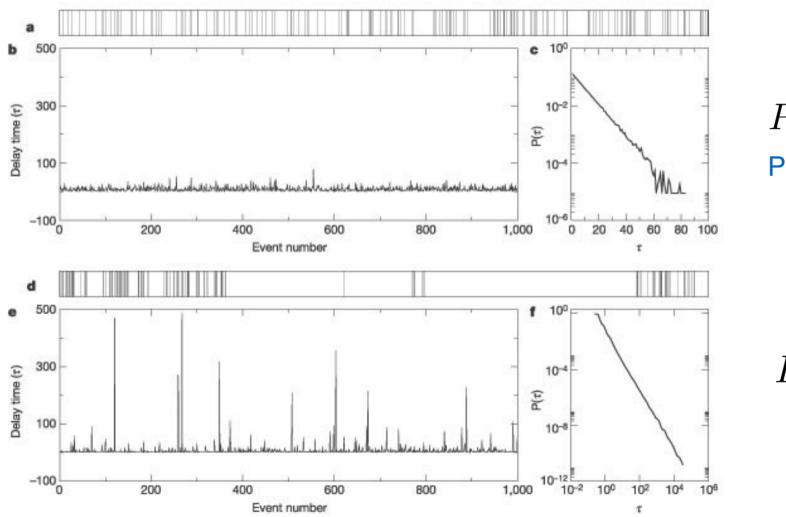
Earthquakes in Japan

Neuron firing

Phone calls

Source 2: Burstiness

- Sign of correlated temporal behavior
- Reference: Poisson process, events uncorrelated



 $P(\tau) \sim e^{-q\tau}$ Poisson process

Bursty signal

Barabási, Nature (2005)

Source 2: Burstiness

• Measure of burstiness:

$$B \equiv \frac{(\sigma_{\tau}/m_{\tau}-1)}{(\sigma\tau/m_{\tau}+1)} = \frac{(\sigma_{\tau}-m_{\tau})}{(\sigma_{\tau}+m_{\tau})}$$

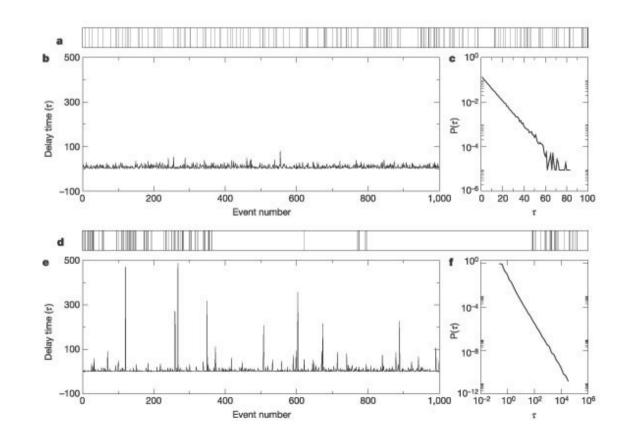
$$m_{ au}$$
 - average inter-event time

$$B=-1$$
 $B=0$

$$B=1$$

 $\sigma_{ au}\,$ - STD of inter-event time

Max bursty



Barabási, Nature (2005)

Possible explanation for burstiness

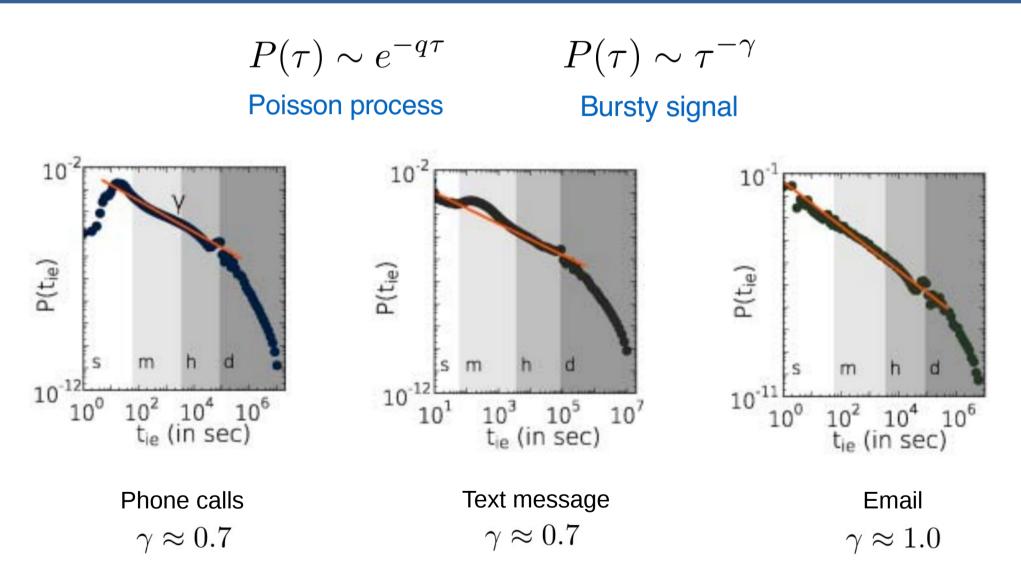
- Executing tasks based on prioirity
- L types of tasks, one each (e.g. work, family, movie watching,...)
- Each task *i* has a priority x_i draw uniformly from [0,1]
- Each timestep one task is executed, probability of choosing *i*:

$$\Pi(i) = \frac{x_i^{\gamma}}{\sum_{j=1}^L x_j^{\gamma}}$$

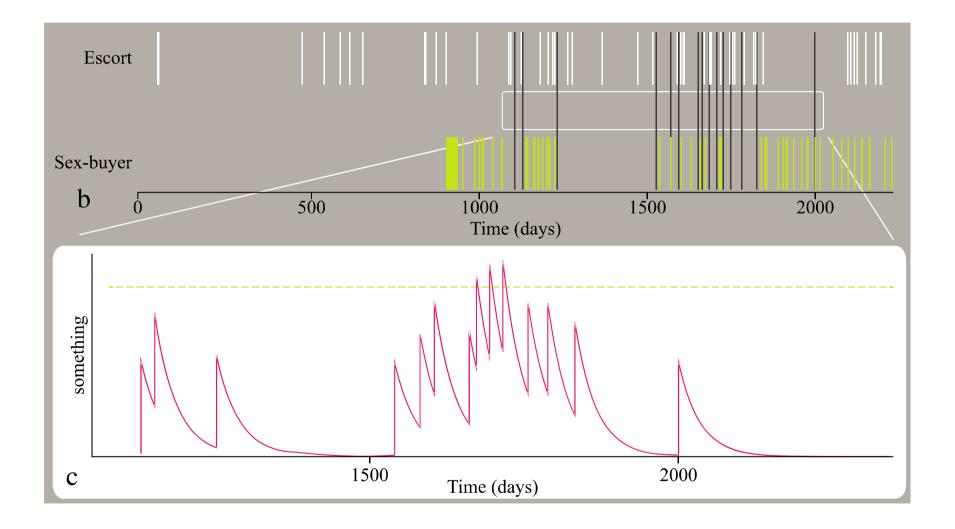
And a new task is added of that type

$$\begin{split} \gamma &= 0 & \gamma &= \infty \\ \text{Random} & \text{Deterministic} \\ P(\tau) &\sim e^{-\tau} & P(\tau) &\sim \tau^{-1} \end{split}$$

Is inter-event time power-law?



• Is this a power-law? Definitely not exponential.



L. EC Rocha, F. Liljeros, and P. Holme. PNAS 107.13 (2010)

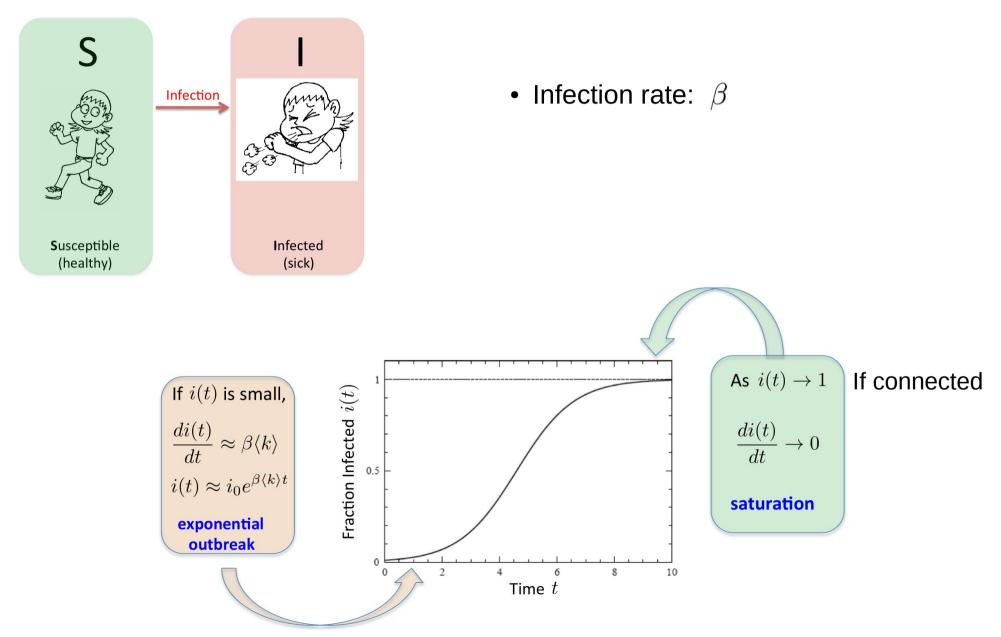
Processes and null models

Structure and dynamics

- So far: various measures to characterize network
- How does structure affect processes on the network?
- Possibility:
 - 1) Generate model networks with given parameters.
 - 2) Run dynamics model \rightarrow measure outcome.
 - 3) Scan parameters.
- Models from scratch: many parameters to set \rightarrow few models, no dominant
- Instead:
 - 1) Take empirical network.
 - 2) Remove correlations by randomization.
 - 3) Run dynamics model \rightarrow measure outcome.

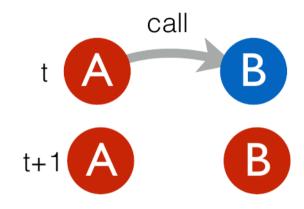
Dynamics

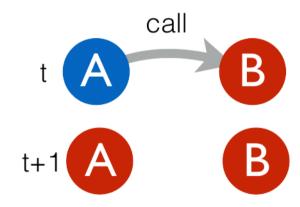
• Model: SI model



Dynamics

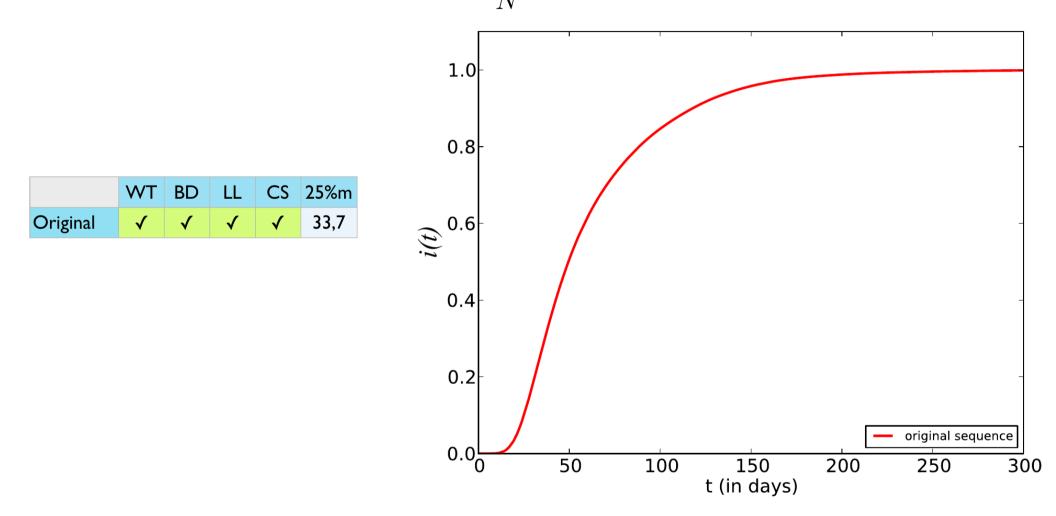
- Model: SI model on a temporal network
- Simplest model of information spreading
- Infection only spreads along active contacts
- Infection can spread both ways
- Infection rate $\beta = 1$
- Single seed at *t=0*
- Mobile call data as underlying network





Original temporal net

• We run SI model and measure $i(t) = \frac{I(t)}{N}$



• Now what? Is this because burstiness, community structure?

Properties of the original

• Bursty dynamics (BD)

Heterogeneous inter-event time distribution

Community structure (CS)

Densely connected subgroups (Any other structure beyond degree distribution)

• Link-link correlations (LL)

Causality between consecutive calls

• Weight-topology correlation (WT)

Strong ties within local communities, weak ties connect different communities Weight = total call time

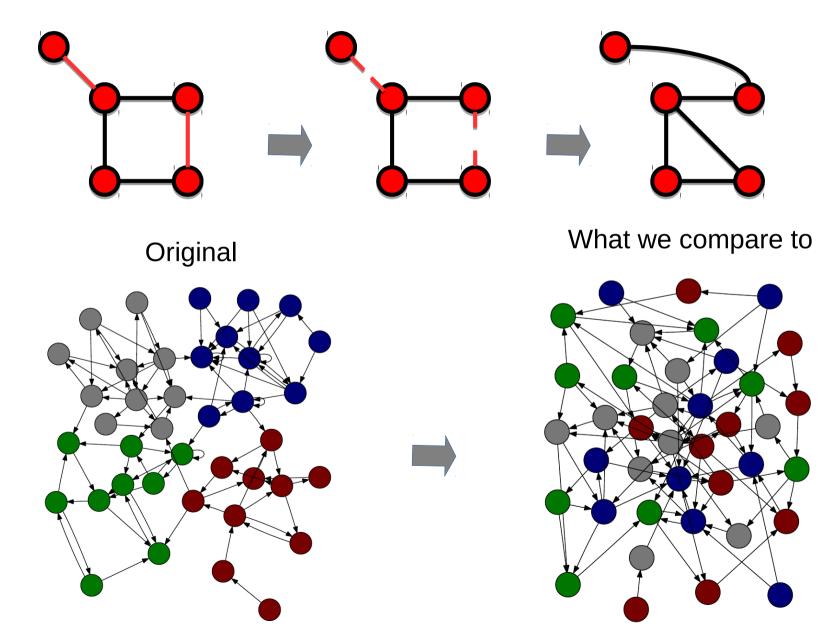
s = strength of a node = some of adjacent link weights

Onnela, J-P., et al. "Structure and tie strengths in mobile communication networks." PNAS 104.18 (2007).

	WT	BD	LL	CS	25% m
Original	\checkmark	\checkmark	\checkmark	\checkmark	33,7

Recap from community detection

• Randomization to remove community structure of a static network

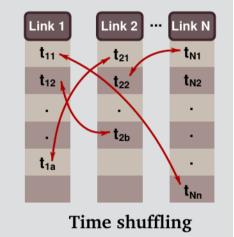


Randomization 1: temp. config. model

- Degree preserved randomization to remove CS and WT
- Shuffle event times to remove BD and LL

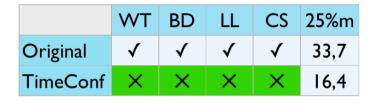
Shuffling

- Shuffle the event times of calls and destroy temporal heterogeneities
- keep P(w), P(k), P(s), w-top correlations
- destroy P(t_{ie}), link-link correlations

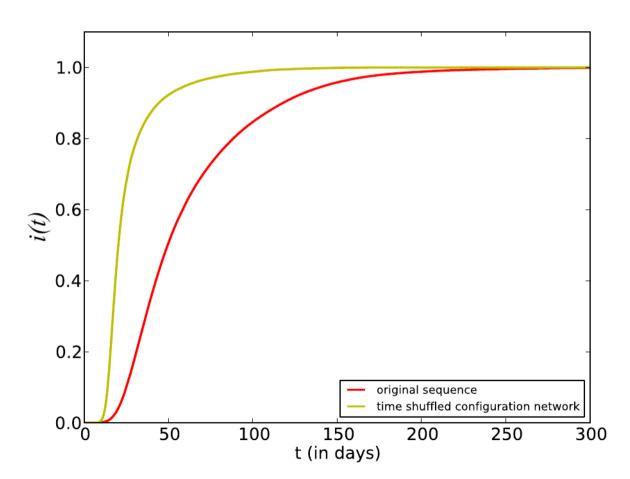


Randomization 1: temp. config. model

- Degree preserved randomization to remove CS and WT
- Shuffle event times to remove BD and LL
- No correlation left.



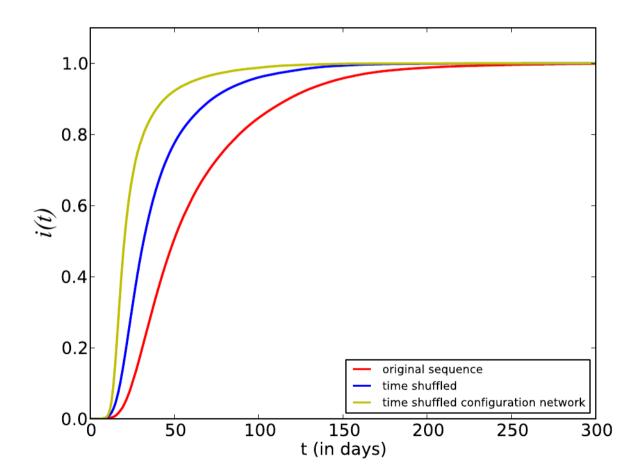
 \rightarrow Correlations slow the spread of information.



Randomization 2: time shuffled network

- Shuffle event times to remove **BD** and **LL**
- CS and WT remain.

	WT	BD	LL	CS	25%m
Original	\checkmark	\checkmark	\checkmark	\checkmark	33,7
TimeConf	×	×	×	×	16,4
Time	\checkmark	×	×	\checkmark	22,9



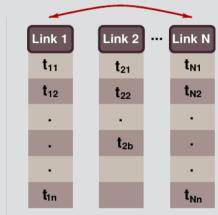
Randomization 2: time shuffled network

• Shuffle event sequences to remove WT and LL

Shuffling

- Change complete call sequences of individuals regardless of their edge weight
- keep P(w), P(k), P(t_{ie})
- destroy P(s), link-link correlations, w-top correlations

• CS and BD remain.

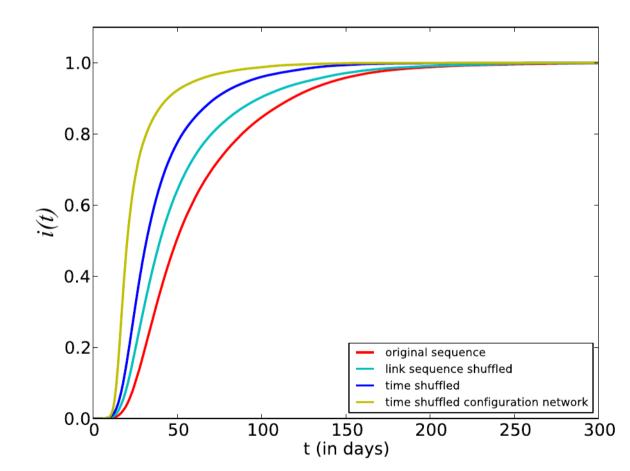


Eq.-w. link-seq. shuffling

Randomization 3: time seq. shuffled

- Shuffle event sequences to remove WT and LL
- CS and BD remain.

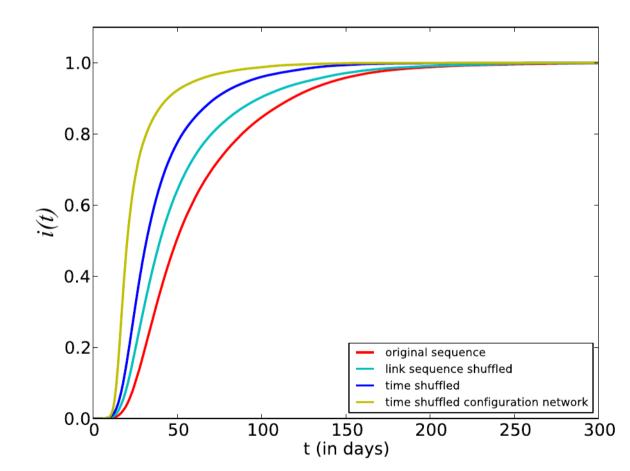
	WT	BD	LL	CS	25%m
Original	\checkmark	\checkmark	\checkmark	\checkmark	33,7
TimeConf	×	×	×	×	16,4
Time	\checkmark	×	×	\checkmark	22,9
Link	×	\checkmark	×	\checkmark	27,5



Randomization 3: time seq. shuffled

- Shuffle event sequences to remove WT and LL
- CS and BD remain.

	WT	BD	LL	CS	25%m
Original	\checkmark	\checkmark	\checkmark	\checkmark	33,7
TimeConf	×	×	×	×	16,4
Time	\checkmark	×	×	\checkmark	22,9
Link	×	\checkmark	×	\checkmark	27,5

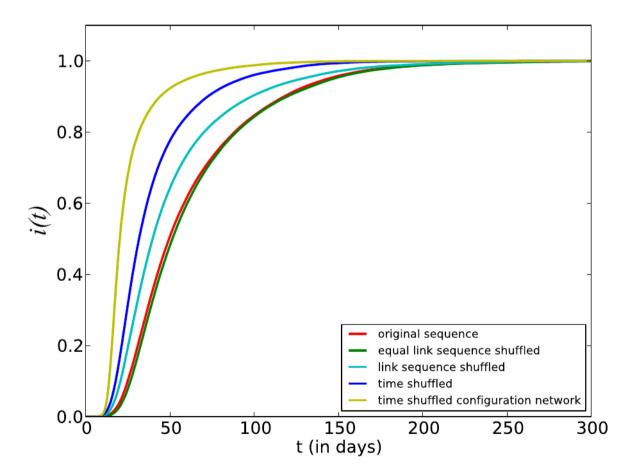


Rand. 4: equal link time seq. shuffled

- Shuffle event sequences if they have the same weight to remove LL
- CS, WT and BD remain.

	WT	BD	LL	CS	25%m
Original	\checkmark	\checkmark	\checkmark	\checkmark	33,7
TimeConf	×	×	×	×	16,4
Time	\checkmark	×	×	\checkmark	22,9
Link	×	\checkmark	×	\checkmark	27,5
Equal link	\checkmark	\checkmark	×	\checkmark	35,3

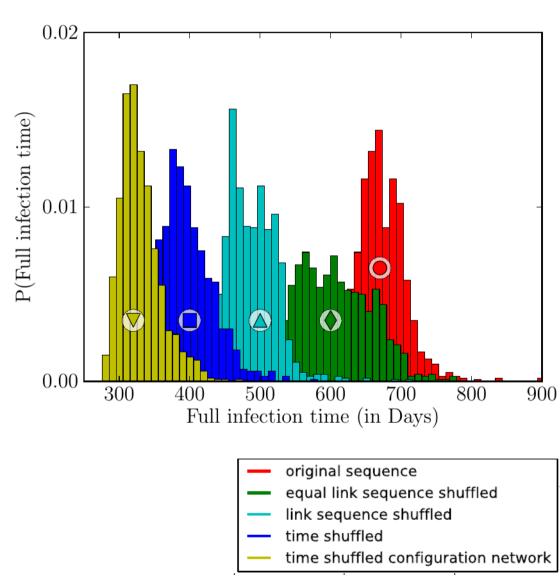
→ Multi-link processes slightly accelerate the spread.



Long time behavior

- Distribution of complete infection time
- Evidence of effect of correlations in the late time stage.
- Multi-link correlations have contrary effect compared to early stage
- WT and BD are the main factors in slowing down

	WT	BD	LL	CS	25%m
Original	\checkmark	\checkmark	\checkmark	\checkmark	33,7
TimeConf	×	×	×	×	16,4
Time	\checkmark	×	×	\checkmark	22,9
Link	X	\checkmark	×	\checkmark	27,5
Equal link	\checkmark	\checkmark	×	\checkmark	35,3



Summary

• Timescale of dynamics and changes in network structure comparable

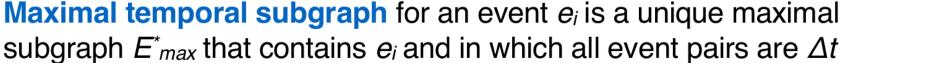
→ Temporal networks

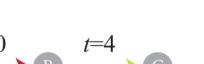
- Time respecting paths profound effect on spreading
- Temporal inhomogeneities: circadian rhythm and burstiness
- Measures more involved, computationally more difficult

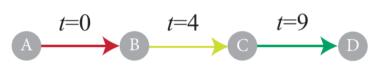
Temporal motifs

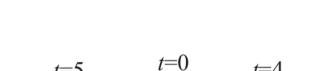
Slide adopted from Márton Karsai

- Valid temporal subgraph are connected temporal subgraphs where all Δt connected events of each node are consecutive
- Connected temporal subgraph consists of set of events, which are all Δt connected
- **At connected** are two events if there exists a sequence of events $e_i = e_{k0}e_{k1}e_{k2}\dots e_{kn} = e_i$ such that all pairs of consecutive events are Δt adjacent
- **At adjacent** are two events if they share at least one node and are performed in Δt









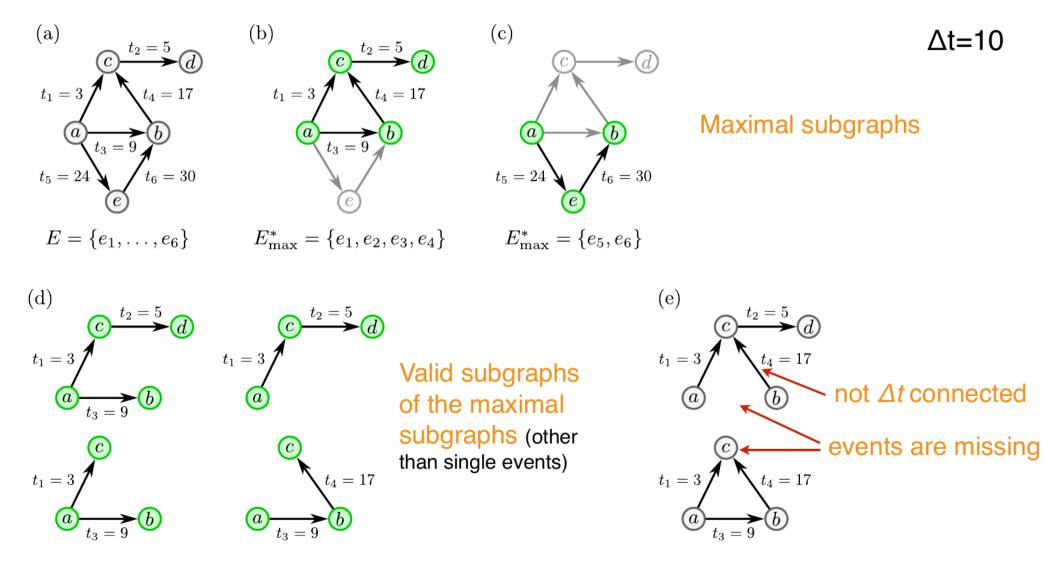
 $\Lambda t=5$

Definitions

connected

Detection

Mezoscopic correlated and casual temporal structures with topological and temporal order isomorphism



Slide adopted from Márton Karsai

Algorithm

Mezoscopic correlated and casual temporal structures with topological and temporal order isomorphism

- To detect them we need to group events into equivalent classes where timing not but direction and ordering matters
 - 1. Find all maximum connected subgraphs E^*_{max}
 - start from an event *e*_i
 - · iterate forward and backward to find all Δt adjacent events
 - · repeat it for all new events
 - 2. Find all valid subgraphs E*

(this can be reduced to find all induced subgraphs of a static graph)

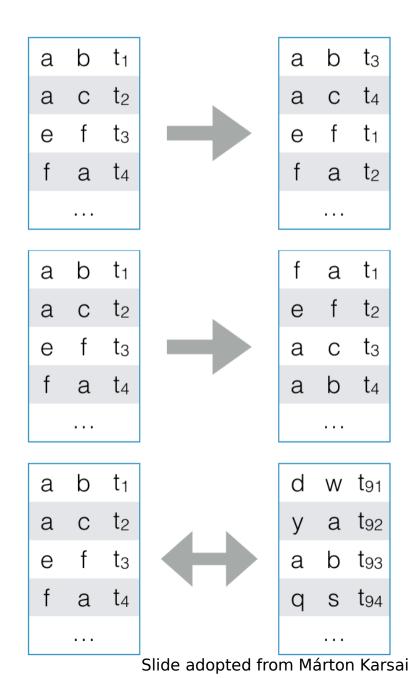
3. Identify the motifs for all E^* subgraphs

(map to directed coloured graphs and find isomorphic structures with equivalent ordering, e.g. using the bliss algorithm (Junttila and Kaski (2007)))

What to compare to?

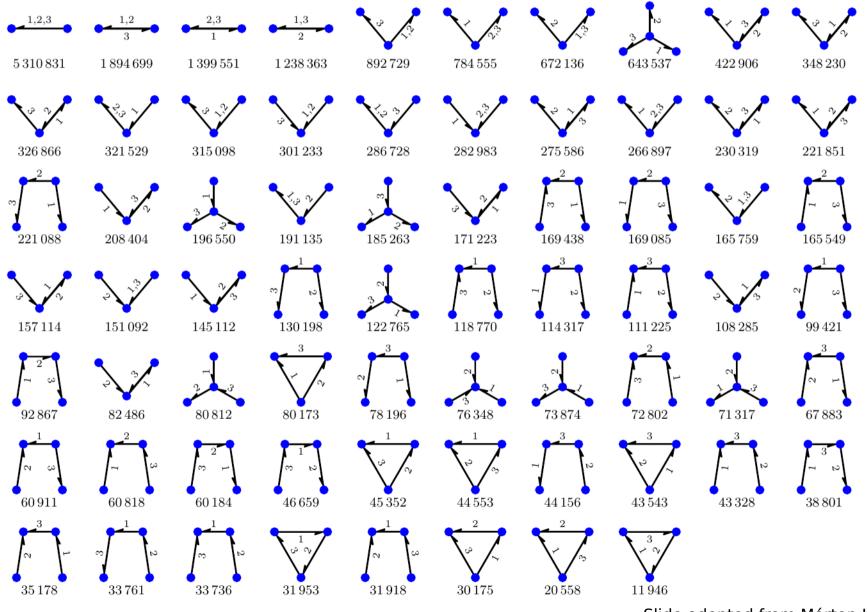
Candidates null models

- 1. Time-shuffled reference: randomly redistribute event times between events
 - Destroys all temporal correlations and casual correlations
- 2. Time-reversed reference: read the event sequence in a reversed order
 - Destroys all casual correlations but keeps all temporal correlations
- 3. Self reference: compare different periods of the sequence to each other
 - Highlights seasonal dependencies



Phone call network

All 3-call motifs



Phone call network

All 3-call motifs

