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Temporal Networks

e So far: static network

* Description:

Microscopic:
Node, link properties
(degree, centralities)
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Mezoscopic:
Motives, communities

Pk

Macroscopic:
statistics




Temporal Networks

* Static network: Spreading process can reach all nodes starting from A.




Temporal Networks

 Now: time of interaction




Temporal Networks

 Now: time of interaction

t=0




Temporal Networks

 Now: time of interaction
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Temporal Networks

 Now: time of interaction
t=2




Temporal Networks

 Now: time of interaction
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Temporal Networks

 Now: time of interaction

t=0
Microscopic: Mezoscopic: Macroscopic:
Node, link properties Motives, communities statistics

(degree, centralities)



When are temporal nets useful?

* Timescales:
T» . timescale of dynamics
TN . timescale of changes in network

« — > 1 : static approximation
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Branigan et al, Internet Computing, IEEE (2001)



When are temporal nets useful?

* Timescales:
T» . timescale of dynamics
TN . timescale of changes in network

T . .
+ D« 1 :annealed approximation

T

Time (days)

O o w >

Example: PC or Mac
* Process slow enough that A meets all contacts

* Weight: how frequently they meet

P. Holme and J. Saramaki. "Temporal networks." Physics reports 519.3 (2012): 97-125.



When are temporal nets useful?

* Timescales:
T» . timescale of dynamics
TN . timescale of changes in network

TEMPORAL NETWORKS



Examples

* Communication: Email, phone call, face-to-face

* Proximity: same hospital room, meet at conference, animals hanging
out

* Transportation: train, flights...

* Cell biology: protein-protein, gene regulation

Email communication
J. Tang, John, Social Network Systems. ACM, 2010.



Examples

* Communication: Email, phone call, face-to-face

* Proximity: same hospital room, meet at conference, animals hanging
out

* Transportation: train, flights...

* Cell biology: protein-protein, gene regulation

12:00 to 13:00 _

14:00t0 15:00 © &
15:00 to 16:00

17:00 t0 18:00 &8/
18:00t0 19:00 S § °
19:00 to 20:00 ®

Visitors at exhibit.
Isella, Lorenzo, et al. Journal of theoretical biology 271.1 (2011): 166-180.
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* Communication: Email, phone call, face-to-face

* Proximity: same hospital room, meet at conference, animals hanging

out

* Transportation: train, flights...

-protein, gene regulation

* Cell biology: protein

8]

.......
N I I I I I
L I O

_I'..........I
N [ N N N N
............

Jrssvil

de & & »

LI I N I ) & &

llllll L * "

40

35

30

25

20

15

10

time (days)

Temporal network of zebras
C. Tantipathananandh, et.al. (2007)



1) Mathematical representation

2) Path- based measures of temporal
3) Temporal heterogeneity

4) Processes and null models

5) Motifs



Mathematical Description



Mathematical representation

« Temporal graph: G, = V E, T

Set of vertices. Set of edges Te {t], [ .. tn}

Set of times when
edge e is active. ! !

1. Contact sequence 2. Adjacency matrix sequence

ECTXxVXV Aiji(t)

» Interval graph:  G¢ — (v, E. T%)

={(t,,t1’), . (tntn’)}

Set of intervals when
edge e is active.

P. Holme and J. Saramaki. "Temporal networks." Physics reports 519.3 (2012): 97-125.



Aggregating in time windows

e Sequence of snapshots

At
<> —_—
A A
B B W—“
C C E
i) K AN K A K I A A N
13 i S N
tIme (days) Iime (days)
Consecutive windows Sliding windows

Lossy method
Sometimes data is not available
Convenient: Static measures on snapshots — Time series of measures

Problem: snapshots depend on window size?
How to choose?



Window size?

MIT reality mining project: high resolution proximity data

Snapshots: A1), A AT)

Adjacency correlation:

Sien) Aiyg A

\/(Zzemy) A7) (zzeNm A(y))

O uncorrelated, 1 if the same

0.4

Time window: /\

N(j)

. set of nodes that are
connected toj at x of y

o ?ff T

0
Oct11  Oct12 Oct13 Oct14 Oct15 Oct16 Oct17 COct18

Average degree

0 0 P . £ i 1M
Oct11  Oct12 Oct13 Oct14 Oct15 Octi16 Oct17 Oct18  Oct11 Oct12 Oct 13 Oct14 Oct15 Octi6 Octi17 Oct18

Clustering coef.
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| o

1-Adjacency corr.

Clauset and Eagle (2012)



Window size?

1 1.

T T T T
—=— mean degree

L —— clustering coefficient
—— adjacency correlation
0.5F
c
=l
©
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(&)
0 .
_0-5 TR TEE T

0 2 4 6 8 10 12 14 16 18 20 22 24
separation time, t (hours)

Time series autocorrelation
for A=5 min

Amplitude

0.01p

0.005

T
— mean degree |

3 4 5

T
| — clustering coefficient |

3 4 5

T
| — adjacency correlation |

3
Frequency (per day)

Fourrier spectrum

Driven by periodic patterns — Sampling rate should be twice the highest frequency

A = 4 hours

Clauset and Eagle (2012)



Path-based measures



Path-based measures

Time-respecting paths:
» Takes into account the temporal order and timing of contacts.

{(Lkt), (kL) ....(pJt)}  t<t:<..<ty

e Optional: maximum wait time

Properties:
* No reciprocity: path i—j does not imply path j—1.
* No transitivity: path /—j and path j— k does not imply path i—j- k.
 Time dependence: path /- that starts at t does not imply paths at t">t.

t=0 =3 =38 t =00
O 233 o3>3
3,4,7 O 5@
7 7
(o) 1 1
59 Q @
11 11
1,2 1,2
8,10 ¢- O 8,10 ¢ O
@ 240 2,40

P. Holme, Physical Review E 71.4 (2005)



Path-based measures

Observation window [t ,t ]

Influence set of node i
 Nodes that can be reached from node i/ within the observation window.
« Reachalbility ratio f. fraction of nodes that can be reached

Source set of node i
 Nodes from node i is reached within the observation window.

Reachability ratio
» Fraction of node pairs (i,j) such that path /- exists.

time ¢

P. Holme, Physical Review E 71.4 (2005)



Path-based measures

Temporal path length - Duration
o Duration=t¢ -t

Temporal distance - Latency
« @7 ,(j) the shortest (fastest) path duration from j to j starting at t.

Information latency
 Ai«(j) the age of the information from jto i at t

A L
— >~ « End of the observation window: paths
3 become rare.
N
S I\  Solution: periodic boundary, throw away end

At, At N
0 t to th—1  In T)

R. K. Pan, and J. Saramé&ki.Physical Review E 84.1 (2011)



Path-based measures

Strongly connected component
« All node pairs are connected in both directions within T.

Weakly connected component
« All node pairs are connected in at least one direction within T.

Temporal betweenness centrality

- Static: , Temporal: ,
itk Vik 2 ik Vik(T)

Etc.

R. K. Pan, and J. Saramé&ki.Physical Review E 84.1 (2011)



Temporal heterogeneity



Source 1: Periodic patterns

For example, circadian rythm
My email usage

2% M Received
M Sent
21
14
7
400 { —— Germany weekdays
. 350 q =——Germany weekends WV\\
300 -
s o™ o o™ /\/\/\
W w 250 - :
200 A
150 -
Scientists work schedule 100 1
50 -
°°°°°°°88888888888888888
700 { ——US weekdays R R R L R
600 4 —US weekends 400 1
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300 - wChina weekends
400 -
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O A N M s W O~ N MS B OO GO AN M
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Wang et al, Journal of infometrics (2012)



Source 2: Burstiness

 Humans and many natural phenomena show heterogeneous temporal behavior on
the individual level.

e Switching between periods of low activity and high activity bursts.
 Sign of correlated temporal behavior

a) " [”] | m] ‘ Earthquakes in Japan
0d:0h Idh Bh 12h 16h 20h 1d:0h 4h 8h 12h 16h 20h  2d:0h
b) I I Neuron firing
0 1 2 3 4 5 6 g 8 g a0 11 12 _ 13

x10e3 ms

c) [] ‘ Il Phone calls

20d:0h  2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h  21d:0F

Karsai et al, Scientific Reports (2011)



Source 2: Burstiness

 Sign of correlated temporal behavior

« Reference: Poisson process, events uncorrelated

a
b 500 c 10° :
£ 300 —qT
S g Poisson process
MMMMMML.&MMM
0 e am e w0 1000 2020 40 80 80 100
Event number T
o [T IIC]
e 500 . . 1 100
< ol 0] : P(r)~T17"7
s; k .
g 100~ | ol : Bursty signal
~10% a0 a0 e 80 1000 C10f 100 ¢ 10 1!||:|a
Event number

T

Barabasi, Nature (2005)



Source 2: Burstiness

 Measure of burstiness:

m. - average inter-event time

(0r/m,—1) (0 —m;)

B (or/m,;+1) (o, +m;)

B=-1 B=0 B=1
o, - STD of inter-event time Max. regular  Poisson Max bursty
a | | L CL 8 CHTETET CUEATR CACOGCEADICT N COme i e
b 500 : : : : , : . : e 100 ————— ;
= 200~ = 10—-’-—
£ | 2
iy F
E 100 - - 104
WMMWM&
100 200 a0  eo0 80 1,000 02040 60 80 100
Event number T
o [[ILIT_TIILATIET | [T |
a 500 T T T T T T T T f 0= —
£ 001 1l:r*l—
E 12
3‘:’ 100 - e
~100 a0 am  ew 80 1000 10-112;4 STy 1!nﬂ

Barabasi, Nature (2005)



Possible explanation for burstiness

Executing tasks based on prioirity
L types of tasks, one each (e.g. work, family, movie watching,...)
Each task i/ has a priority x, draw uniformly from [0,1]

Each timestep one task is executed, probability of choosing .

(i) = Lf”z
Zj:l 333/
* And a new task is added of that type
v=20 Y = 00
Random Deterministic
P(r) ~ e P(r) ~ 71

Barabasi, Nature (2005)



IS Inter-event time power-law?

P(t)~e 17

Poisson process
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Phone calls
v =~ 0.7

Text message
v =~ 0.7

* Is this a power-law? Definitely not exponential.

P(t)~77"7

Bursty signal

10 g™

P(tie)

11 sl
10° 10° 10* 10°
tie (IN S€C)

Emall
v~ 1.0

Karsai et al, Scientific Reports (2012)



Does burstiness matter?

| LS IS [
]\

\

L. EC Rocha, F. Liljeros, and P. Holme. PNAS 107.13 (2010)



Processes and null models



Structure and dynamics

» So far: various measures to characterize network
« How does structure affect processes on the network?
 Possibility:
1) Generate model networks with given parameters.
2) Run dynamics model — measure outcome.
3) Scan parameters.
* Models from scratch: many parameters to set - few models, no dominant

* Instead:
1) Take empirical network.
2) Remove correlations by randomization.
3) Run dynamics model — measure outcome.

L. EC Rocha, F. Liljeros, and P. Holme. PNAS 107.13 (2010)



Dynamics

 Model: SI model

Infection ) * Infection rate: (3
52T
So
Susceptible Infected
(healthy) (sick)

£

1 As i(t) — 1
e (1) i smab = s i(t) If connected
di(t) ks di(t)
~ B{k o 0
dt ) qf:_’ o ] dt
i(t) & igePtht =
@] -
i saturation
exponential E A%

\_ outbreak /

10




Dynamics

 Model: SI model on a temporal network
« Simplest model of information spreading call
* Infection only spreads along active contacts "

 Infection can spread both ways
e Infectionrate 3 =1

_ t+1
e Single seed at t=0

{

t+1

* Mobile call data as underlying network call

Slide adopted from Marton Karsai



Original temporal net

, I(t
* We run Sl model and measure i(t) = %
1.0r
0.8}
WT BD LL CS 25%m
Original v Y Y Y 337 ~ 0.6/
R
0.4}
0.2
|— original sequencel
0'00 50 100 150 200 250 300

t (in days)

 Now what? Is this because burstiness, community structure?

Slide adopted from Marton Karsai



Properties of the original

Bursty dynamics (BD)
Heterogeneous inter-event time distribution

Community structure (CS)
Densely connected subgroups

(Any other structure beyond degree distribution)
WT BD LL CS 25%m

Original v v Y Y 337

Link-link correlations (LL)
Causality between consecutive calls

Weight-topology correlation (WT)
Strong ties within local communities, weak ties connect different communities

Weight = total call time
s = strength of a node = some of adjacent link weights
Onnela, J-P., et al. "Structure and tie strengths in mobile communication networks." PNAS 104.18 (2007).

Slide adopted from Marton Karsai



Recap from community detection

« Randomization to remove community structure of a static network

n-o-s

Original What we compare to




Randomization 1: temp. config. model

* Degree preserved randomization to remove CS and WT

 Shuffle event times to remove BD and LL

Shuffling D £3-ED

e Shuffle the event times of calls and destroy temporal
heterogeneities

e keep P(w), P(k), P(s), w-top correlations

e destroy P(tie), link-link correlations Time shuffling

Slide adopted from Marton Karsai



Randomization 1: temp. config. model

* Degree preserved randomization to remove CS and WT
« Shuffle event times to remove BD and LL

* No correlation left.

WT BD LL CS 25%m 1.0f
Original 33,7

TimeConf ---- 16,4 0.8l

.Q 0.6
- Correlations slow the 0.4
spread of information.
0.2
— original sequence
time shuffled configuration network
0'00 50 100 150 200 250 300

t (in days)

Slide adopted from Marton Karsai



Randomization 2: time shuffled network

 Shuffle event times to remove BD and LL

e CS and WT remain.

1.0f

WT BD LL CS 25%m
Original v Y Y Y 337 0.8}
TimeConf X X X X |64

Time v XX v 229 <08

0.4

0.2

— original sequence
— time shuffled
time shuffled configuration network

0.05- 50 100 150 200 250 300

t (in days)

Slide adopted from Marton Karsai



Randomization 2: time shuffled network

» Shuffle event sequences to remove WT and LL

Shuffling —
e (Change complete call sequences of individuals tos tar tur
regardless of their edge weight e e -

*  keep P(w), P(K), Pl(tc) e
e e

e destroy P(s), link-link correlations, w-top correlations  gq w. ink-seq. shuffling

e CS and BD remain.

Slide adopted from Marton Karsai



« CS and BD remain.

WT BD
Original

TimeConf X X X

v X X
X v XD

Randomization 3: time seq. shuffled

» Shuffle event sequences to remove WT and LL

LL CS 25%m

4
X
v

v 27,5

i(1)

= griginal sequence

— link sequence shuffled

time shuffled

time shuffled configuration network

t (in days)

Slide adopted from Marton Karsai



« CS and BD remain.

WT BD
Original

TimeConf X X X

v X X
X v XD

Randomization 3: time seq. shuffled

» Shuffle event sequences to remove WT and LL

LL CS 25%m

4
X
v

v 27,5

i(1)

= griginal sequence

— link sequence shuffled

time shuffled

time shuffled configuration network

t (in days)

Slide adopted from Marton Karsai



Rand. 4: equal link time seq. shuffled

« Shuffle event sequences if they have the same weight to remove LL

e CS, WT and BD remain.

1.0t
WT BD LL CS 25%m
Original v v Y Y 337 0.8l
TimeConf X X X X 164
Time v X X v 229
Link X v X v 275 =%
Equallink v v [ X | v 353 B
0.4+
— Multi-link processes slightly 0.2} ik e e shuffed
accelerate the spread. link sequence shuffled
/ time shuffled configuration network
005~ 50 100 150 200 250 300

t (in days)

Slide adopted from Marton Karsai



Long time behavior

Distribution of complete infection time

Evidence of effect of correlations in the 0.02
late time stage.

« Multi-link correlations have contrary — |
effect compared to early stage E I
=
« WT and BD are the main factors % ootl dlll
In slowing down <
= |
A
WT BD LL CS 25%m 5
Original v Y Y Y 337 |
TimeConf X X X X 164 0.00 L ,
Time v X X v 229 Y3000 400 500 600 700 800 900
Link X v X v 275 Full infection time (in Days)
Equallink v v [ X v 353

original sequence

equal link sequence shuffled

link sequence shuffled

time shuffled

time shuffled configuration network

Slide adopted from Marton Karsai



Summary

Timescale of dynamics and changes in network structure comparable

— Temporal networks

Time respecting paths profound effect on spreading

Temporal inhomogeneities: circadian rhythm and burstiness

Measures more involved, computationally more difficult



Temporal motifs



At=5
At adjacent are two events if they share at least =0 =4
one node and are performed in At —>
At connected are two events if there exists a =0 =4 =9
sequence of events ej=exoexi€xz...exn=6€j such th > >
all pairs of consecutive events are At adjacent
, =5 t=0 =4
-~ Connected temporal subgraph consists of set < 4—6;
l‘:

of events, which are all Atconnected

~ Valid temporal subgraph are connected temporal subgraphs where all At
connected events of each node are consecutive

- Maximal temporal subgraph for an event e;is a unigue maximal
subgraph E'maxthat contains e; and in which all event pairs are At
connected Slide adopted from Marton Karsai



Detection

Mezoscopic correlated and casual temporal structures with
topological and temporal order isomorphism

() At=10

ts = 26 =30

E = {811 - '186} E;]ax = {81)82: 83764} E;;la)( = {65:66}

Maximal subgraphs

tg =17

Valid subgraphs not At connected

of the maximal

subgraphs (other
than single events)

Slide adopted from Marton Karsai



Algorithm

Mezoscopic correlated and casual temporal structures with
topological and temporal order isomorphism

- To detect them we need to group events into equivalent classes where timing not
but direction and ordering matters

1. Find all maximum connected subgraphs E max
start from an event ¢;

iterate forward and backward to find all At adjacent events
repeat it for all new events

2. Find all valid subgraphs E”

(this can be reduced to find all induced subgraphs of a static graph)
3. Identify the motifs for all E” subgraphs

(map to directed coloured graphs and find isomorphic structures with equivalent
ordering, e.g. using the bliss algorithm (Junttila and Kaski (2007)))

Slide adopted from Marton Karsai



What to compare to?

Candidates null models

1. Time-shuffled reference: randomly
redistribute event times between

events
Destroys all temporal correlations and casual
correlations

2. Time-reversed reference: read the

event sequence in a reversed order
Destroys all casual correlations but keeps all
temporal correlations

3. Self reference: compare different

periods of the sequence to each other
Highlights seasonal dependencies

—-~ O © O

t1
{2
&
¥

—-~ O QO O

o - O O

{1
to
&
¥

—- O Q ©

{1
to
{3
ts

t3
ta

—-~ O ©® ©

t1

Q)]

t3
ta

O O d 9 —
O O

to1
too

tos

O 0L < QO
w T Q@ =

toa

Slide adopted from Marton Karsai



Phone call network
All 3-call motifs

B T G S \/ \/ \/ /I\ v \/

5310831 1 894 699 1399551 1238 363 892729 T84 555 672 136 643 537 422 906 348 230
o % v < > o ‘
326 866 321529 315098 301233 286 728 282983 275 H86 266 897 230319 221851
2 2 2 2
m! ""! v .j\. W v ED‘J Hi Hi c,vi .V i--f wi
2 2
221 088 208 404 196 550 191135 185263 171223 169 438 169 085 165759 165 549
1 1 3 3 1
157114 151092 145112 130198 122765 118770 114317 111225 108 285 99421
3 2 3
N A (8 ” - ; im 5"‘ ?w »-Ai
%
92867 82 486 80173 78196 76348 73874 72802 71317 67 883
1 2 1 1 3 3 3
60911 60818 46659 45 352 44553 44156 43543 43328 38801
3 1 1 2
—
™ - i v £ v . b
35178 33761 33736 31953 30175 11 946

Slide adopted from Marton Karsai



Phone call network

All 3-call motifs

Most commons Least commons reflect
reflect burstiness non-casual interactions
(a) EMPIRICAL

1,2,3 1,2 2.3 1,3
=0 6——0 o6——0 oO——0 - Z i v v v
5.83e6(0.270)  1.70e6(0.079) 1.55e6(0.072) 1.36e6(0.063) 3.19¢4(0.001)  3.02¢4(0.001)  2.06e4(0.001)  1.19e4(0.001)

very (b) TIME-SHUFFLED (unbiased)
different L - o
frequenciesy , &=—* +—=——0 o&——o -

8.67e4(0.063) 4.76e4((]z.[)35) 4.24e4(0.031)  4.23e4(0.031) 2721(0.002) 2674(0.002) 1996(0.001) 1988(0.001)

[\

total count of fraction relative to

motif all 3-call motifs
Most common motifs Least commons motifs
reflect casual correlations are capturing non-casual
and information flow interactions

31953 11946

Slide adopted from Marton Karsai
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