ECS 253 / MAE 253, Lecture 13
May 15, 2018

“Diffusion, Cascades and Influence”
Mathematical models & generating functions



Last week: spatial flows and game theory on networks

e Optimal location of facilities to maximize access for all.

e Designing “optimal” spatial networks

(collection/distribution networks — subways, power lines, road
networks, airline networks).

e Detalls of flows on actual networks make all the difference!
— Users act according to Nash

— Braess paradox
(removing edges may improve a network’s performance!)

— The “Price of Anarchy”
(cost of worst Nash egm / cost of system optimal)



This week: Diffusion and cascades in networks
(Nodes in one of two states)

e Viruses (human and computer)
— contact processes
— epidemic thresholds

e Adoption of new technologies
— Winner take all
— Benefit of first to market
— Benefit of second to market

e Political or social beliefs and societal norms

A long history of study, now trying to add impact of underlying
network structure.



Simple diffusion

Diffusion of a substance ¢ on a network with adjacency matrix A.

— Let ¢, denote the concentration at node .

e Diffusion: % = CZJ AZ](QbJ — ¢z)
o In steady-state, =0 = ¢; — ¢;.

e In steady-state all nodes have the same value of ¢.

¢ In opinion dynamics this is called consensus.



Simple diffusion: The graph Laplacian

o Li=CY . Aij(¢; — i)
— CZ;‘ Aijoj — Cs Zj Aij
=C)_; Aijp; — Coik;
= C ), (Aij — dijki) 9.

(Note Kronecker delta: 6;; = 1ifi = j and §,; = 0 if ¢ # j)

e In matrix form: 22 = C(A — D)¢ = CL¢



o From last page, matrix form: 2¢ = C(A — D)¢ = CL¢

e Graph Laplacian: L=A — D

where matrix D has zero entries except for diagonal with is
degree of node:

D;; = k; if ¢ = 5 and 0 otherwise.



The graph Laplacian

e [ has real positive eigenvalues 0 = A\ < Ay < -+ < Ay

e Number of eigenvalues equal to 0 is the number of distinct,
disconnected components of a graph

(Compare this to the column-normalized state transition matrix
from earlier in class (i.e., random-walk), where the number of
A's equal to 1 is the number of components).

e If \y # 0 the graph is fully connected. The bigger the value of
Ao the more connected (less modular) the graph.



But people are not diffusing particles
Opinion dynamics on networks

What drives social change?



Accelerating pace of social change

Speed of Change

Number of years from an issue’s trigger point
to federal action (all abortion years shown)
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Bloomberg, April 26, 2015.



Collective phenomena in social networks
How the online world is changing the game

J. Flack, R.D., editors, PIEEE (2014)

Proceedings: IEEE Past: Small, geographically localized
social networks, concentrated
Impact of Changing Technology power and influence

on Social Networks

Present: Digital footprint,
massive online experimentation,
global information,

rapid rate of change.

“Re-computing the social sciences’
Next step connecting these models with our digital footprints.



Mathematical models of social behavior

Analyze extent of epidemic spreading, product adoption, etc:

INSIDE SCIENCE NEWS SERVICE

e Thresholds models Zealots Help Sway Popular Opinions

e \oter models

e Opinion dynamics
(e.g. The Naming game)

e Percolation

Image credit: Gabriel Saldana via Flickr | http://bit.ly/1ESIjCQ
Rights information: http://bit.ly/1dWcOPS

e Game theory

Enthusiasts can greatly influence the adoption of new ideas.
Originally published: Feb 19 2015 - 10:45am

By: Ker Than, Contributor

A. Waagen, G. Verma, K. Chan, A. Swami, R. D. PRE, 2015.

What mechanism makes an individual change their mind?



Collective phenomena: Phase transitions
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e Contact processes

e Abrupt shift as slow-time parameter varies
e Epidemic spreading

e €.0., Vinyl records vs digital music



Phase transitions depend on the underlying details

e The network structure

— Degree distribution (variation in connectivity)

— Modular structure

e The model of human behavior

— Simple contact process / percolation / epidemic spreading

+ Thresholds (critical mass) versus diminishing returns
+ Influential versus susceptible individuals

— Voter models
— Opinion dynamics / consensus

+ The role of zealots

— Strategic interactions / Nash equilibrium (decentralized solutions)



Simplest model of human behavior:
Binary opinion dynamics

Each individual can be in one of two states {—1,+1}

“Infected” or “healthy” (relevant to both human and computer networks)
Holding opinion “A” or “B”
Adopting new product, or sticking with status quo

Many other choices....



But what causes opinion to change?



|. Diminishing returns versus thresholds
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k = number of friends adopting k = number of friends adopting
Diminishing returns? Critical mass?
Kleinberg, Leskovec, Kempe Watts, Dodds

e.g., KDD 2003. e.g. PNAS 2002.

“Hill climbing” / best response Percolation & generating functions

Algorithms for influential seed nodes Susceptibles vs influentials/mavens
(Depends on active vs passive influence.)



ll: The Voter model, “Tell me what to think”

V. Sood, S. Redner, Phys. Rev. Lett. 94, 2005.

e At each time step in the process, pick a node at random.

e That node picks a random neighbor, and adopts the opinion of the neighbor.

e Ultimately, only one opinion prevails. The high degree nodes (hubs) win.

p(k)
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e Invasion percolation(the “bully” model) yields the opposite: leaf nodes propagate opinions.




lll: “The Naming Game” / open minded individuals
Steels, Art. Life 1995; Barrat et al., Chaos 2007; Baronchelli et al., Int. J. Mod. Phys. 2008.

e Originally introduced for linguistic convergence. Two opinions, A and B.

e And each individual can hold A, B, or {A, B}.

e Exchange opinions with neighbors and update




The impact of Zealots
Committed individuals who will never change opinions

x’:Z(ererg)—y(x—P),

q
y' Z<y+z+§) —x(y — q),

z=1—x—y.

p is fraction of A zealots; ¢ is fraction of B zealots.

Voter model: A finite number of zealots can sway the outcome.

Naming game: A small fraction of zealots can sway the outcome.

Naming game with multiple choices, k:
Operating systems; cell phones; political parties; etc

— Zealots of only one kind: Quickly obey the zealot.
— Equal fractions of zealots of all kinds: Quickly reach stalemate.



More formal analysis .....



Diffusion, Cascade behaviors, and influential nodes
Part |I: Ensemble models

Generating functions / Master equations / giant components

e Contact processes / similar to biological epidemic spreading

e Heterogeneity due to node degree
(not due to different node preferences)

e Epidemic spreading
e Opinion dynamics

e Social networks: Watts PNAS 2001 (threshold model; no
global cascade region)



Diffusion, Cascade behaviors, and influential nodes
Part ll: Contact processes with individual node preferences

e Long history of empirical / qualitative study in the social
sciences (Peyton Young, Granovetter, Martin Nowak ...;
diffusion of innovation; societal norms)

e Recent theorems: “network coordination games” (bigger
payout if connected nodes in the same state)
(Kleinberg, Kempe, Tardos, Dodds, Watts, Domingos)

e Finding the influential set of nodes, or the k£ most influential.
Often NP-hard and not amenable to approximation algorithms

e Key distinction:
— thresholds of activation (leads to unpredictable behaviors)
— diminishing returns (submodular functions nicer)



Diffusion, Cascade behaviors, and influential nodes
Part lll: Markov chains and mixing times

e New game-theoretic approaches (general coordination games)
— Results in an Ising model.
— Montanari and Saberi PNAS 2010.

e Studies using techniques from Parts | and Il suggest:
— Innovations spread quickly in highly connected networks.
— Long-range links benefit spreading.
— High-degree nodes quite influential (enhance spreading).

e Studies using techniques from Part Il suggest:
— Innovations spread quickly in locally connected networks.
— Local spatial coordination enhances spreading (having a
spatial metric; graph embeddable in small dimension).
— High-degree nodes slow down spreading.



Part I. Ensemble approaches

e A. Master equations (Random graph evolution, cluster aggregation)
e B. Network configuration model

e C. Generating functions

— Degree distribution (fraction of nodes with degree k, for all k)

p(k)

— Degree sequence (A realization, N specific values drawn from P;)



A. Network Configuration Model
Degree sequence given

o ¥ E

e Bollobas 1980; Molloy and Reed 1995, 1998.

e Build a random network with a specified degree sequence.
e Assign each node a degree at the beginning.

e Random stub-matching until all half-edges are partnered.

(Make sure total # edges even, of course.)

e Self-loops and multiple edges possible, but less likely as
network size increases.

HW 4b — build a configuration model and analyze percolation and spreading.



B. Generating functions:
Properties of the ensemble of configuration model RGs

Determining properties of the ensemble of all graphs with a given
degree distribution, P;.

e The basic generating function: Go(z) = >, Prx”

Note, evaluate at z = 1: Go(1) =), Pr = 1.

e The moments of P, can be obtained from derivatives of Gy(x):

First derivative:
Gy(z) = LGo(z) = >, kPpxF—Y

Evaluate atz =1, G{(1) = %Go(x)h;:l = > . kP (the mean)



e Base: Gy(1)

e First moment,

Calculating moments

= >, P, =1 (it is the sum of probabilities).

(k) =) kP, = Go(1)

(And note xG{(x) = >, kPxz¥)

e Second moment, (k%) =3, k?P;

J-(xGy ()
So L (2G(x

(And note x—--

= Zk kQPkCIZ‘<k_1)
| r=1 = 2k k2 Py

w(@Go(@)) = 225 k* Pra®)

e The n-th moment

(k™)

=), k"P, = (x%)n Go(x)

r=1




Generating functions for the giant component of a random
graph

Newman, Watts, Strogatz PRE 64 (2001)

With the basic generating function in place, can build on it to
calculate properties of more interesting distributions.

1. G.F. for connectivity of a node at edge of randomly chosen
edge. Which enables calculating:

2. G.F. for size of the component to which that node belongs.
Which enables calculating:

3. G.F. for size of the component to which an arbitrary node
belongs.



Following a random edge

e k times more likely to follow edge to a node of degree k than a
node of degree 1. Probability random edge is attached to node

of degree k:

e There are k£ — 1 other edges outgoing from this node.
(Called the “excess degree”)

e Each of those leads to a node of degree k' with probability m/..

0% AT! Vs

(Circles denote isolated nodes, squares components of unknown size.)




What is the GF for the excess degree?

(Build up more complex from simpler)

e Let g, denote the probability of following an edge to a node with
excess degree of k1 qr = [(k+ 1)Pri1]/ (k)

e The associated GF

Gy (z) = <—11C> l;)(k 1) Py

— % i kak_l

= 77 Co(@)

e Recall the most basic GF: Gy(z) =5, Prx”



H:(x), Generating function for probability of size of
component reached by following random edge

(Note: subscript 0 on GF denotes node property, 1 denotes edge property)

- {H\{ Vs

Hi(z) = vqo + xq1 Hi(x) + xqo[H1 (2)]? + xq3[H (2)]° - - -

(A self-consistency equation. We assume a tree network.)

Note also that H(z) =z, qx[H1(2)]* = 2G1(H;(x))



Aside 1: Self-consistency equations
Graphical solution

e See HW 1b: Self-consistency
for ER giant component

S=1—e W5

e Solve for S((k)) (see Fig a)

and plot result in Fig b.
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Graphical Solution



Aside 2: Powers property

The PGF for the sum of m instances of random variable k is the
PGF for k to the m’th power.

PGF for > kis [Hi(x)|™

e Easiest to see if m = 2 (sum over two realizations)
o [Go(@)]” = [¥, Pua]”
= ij pjpra’ T
= popox” + (pop1 + p1po) + (pop2 + p1p1 + pape)r” + - - -

e The coefficient multiplying power n is the sum of all products
DiD; such that : + 7 =n.



Hy(x), Generating function for distribution in component
sizes starting from arbitrary node

= O+0O +\<! + \CE/+

Ho(.flf) — ZIZP() -+ $P1H1(CIJ) —+ CCPQ[Hl(CE)]Z + xP3[H1(gj)]3 .

=z ), Po[Hi(2)]" = 2Go(H:(x))

e Can take derivatives of Hy(x) to find moments of component
size distribution!

e Note we have assumed a tree-like topology.



Expected size of a component starting from arbitrary node

o (s) = jpHo(2)|,_, = 7z2Go(Hi(2))],_,

= Go(H1(1)) + £Go(H1(1)) - £LHy (1)

Since Hi(1) = 1, (ie., itis the sum of the probabilities)

(s) =1+ G(1) - H{(1) (Recall (k) = G/\(1))

e Recall (three slides ago) H{(x) = xG1(H1(x))
so Hi(1) =1+ Gy(1)H{(1) = Hj(1) =1/(1 - G}(1))

Go(1)
1—G7 (1)

And thus, (s) =1+



e Now evaluating the derivative:

d 1

1
= — S k(k—1)Pz*2
B Ek:( )Py

e Evaluate at z =1

Gi(1) = %2}; k(k —1)Py =

7
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Expected size of a component starting from arbitrary node

Gp(1
o (s)=1+ 1—8;(’1()1)

o Go(l) = (k)

¢ GL(1) = s [(#) = (k)




Emergence of the giant component
® <S> — OO

e This happens when: 2 (k) = (k?), which can also be written as

(k) = ((k) = (k)

e This means expected number of nearest neighbors (k),
first equals expected number of second nearest neighbors

((F2) = (k).
e Can also be written as (k*) — 2 (k) = 0, which is

the famous Molloy and Reed criteria®, giant emerges when:

S k(k—2) P, = 0.

*GF approach is easier than Molloy Reed!



GFs widely used in “network epidemiology”

e Fragility of Power Law Random Graphs to targeted node
removal / Robustness to random removal
— Callaway PRL 2000
— Cohen PRL 2000

e Onset of epidemic threshold:
— C Moore, MEJ Newman, Physical Review E, 2000 — MEJ
Newman - Physical Review E, 2002
— Lauren Ancel Meyers, M.E.J. Newmanb, Babak Pourbohlou,
Journal of Theoretical Biology, 2006
— JC Miller - Physical Review E, 2007

e Information flow in social networks
F Wu, BA Huberman, LA Adamic, Physica A, 2004.

e Cascades on random networks
Watts PNAS 2002.



