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“Diffusion, Cascades and Influence”
Mathematical models & generating functions



Last week: spatial flows and game theory on networks

• Optimal location of facilities to maximize access for all.

• Designing “optimal” spatial networks
(collection/distribution networks – subways, power lines, road
networks, airline networks).

• Details of flows on actual networks make all the difference!

– Users act according to Nash

– Braess paradox
(removing edges may improve a network’s performance!)

– The “Price of Anarchy”
(cost of worst Nash eqm / cost of system optimal)



This week: Diffusion and cascades in networks
(Nodes in one of two states)

• Viruses (human and computer)
– contact processes
– epidemic thresholds

• Adoption of new technologies
– Winner take all
– Benefit of first to market
– Benefit of second to market

• Political or social beliefs and societal norms

A long history of study, now trying to add impact of underlying
network structure.



Simple diffusion

Diffusion of a substance φ on a network with adjacency matrix A.

– Let φi denote the concentration at node i.

• Diffusion: dφi
dt = C

∑
j Aij(φj − φi)

• In steady-state, dφi
dt = 0 =⇒ φj − φi.

• In steady-state all nodes have the same value of φ.

• In opinion dynamics this is called consensus.



Simple diffusion: The graph Laplacian

• dφi
dt = C

∑
j Aij(φj − φi)

= C
∑
j Aijφj − Cφi

∑
j Aij

= C
∑
j Aijφj − Cφiki

= C
∑
j (Aij − δijki)φj.

(Note Kronecker delta: δij = 1 if i = j and δij = 0 if i 6= j)

• In matrix form: dφdt = C(A−D)φ = CLφ



• From last page, matrix form: dφdt = C(A−D)φ = CLφ

• Graph Laplacian: L = A−D

where matrix D has zero entries except for diagonal with is
degree of node:

Dij = ki if i = j and 0 otherwise.



The graph Laplacian

• L has real positive eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

• Number of eigenvalues equal to 0 is the number of distinct,
disconnected components of a graph

(Compare this to the column-normalized state transition matrix
from earlier in class (i.e., random-walk), where the number of
λ’s equal to 1 is the number of components).

• If λ2 6= 0 the graph is fully connected. The bigger the value of
λ2 the more connected (less modular) the graph.



But people are not diffusing particles
Opinion dynamics on networks

What drives social change?



Accelerating pace of social change

Bloomberg, April 26, 2015.



Collective phenomena in social networks
How the online world is changing the game

J. Flack, R.D., editors, PIEEE (2014)

Past: Small, geographically localized
social networks, concentrated

power and influence

Present: Digital footprint,
massive online experimentation,

global information,
rapid rate of change.

“Re-computing the social sciences”
Next step connecting these models with our digital footprints.



Mathematical models of social behavior

Analyze extent of epidemic spreading, product adoption, etc:

• Thresholds models

• Voter models

• Opinion dynamics
(e.g. The Naming game)

• Percolation

• Game theory

A. Waagen, G. Verma, K. Chan, A. Swami, R. D. PRE, 2015.

What mechanism makes an individual change their mind?



Collective phenomena: Phase transitions
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Smooth transition Cusp bifurcation/catastrophe

• Percolation • dx
dt = −x3 + x+ a.

• Contact processes • Abrupt shift as slow-time parameter varies

• Epidemic spreading • e.g., Vinyl records vs digital music



Phase transitions depend on the underlying details

• The network structure

– Degree distribution (variation in connectivity)

– Modular structure

• The model of human behavior

– Simple contact process / percolation / epidemic spreading

∗ Thresholds (critical mass) versus diminishing returns
∗ Influential versus susceptible individuals

– Voter models

– Opinion dynamics / consensus

∗ The role of zealots

– Strategic interactions / Nash equilibrium (decentralized solutions)



Simplest model of human behavior:

Binary opinion dynamics

Each individual can be in one of two states {−1,+1}

• “Infected” or “healthy” (relevant to both human and computer networks)

• Holding opinion “A” or “B”

• Adopting new product, or sticking with status quo

• Many other choices....



But what causes opinion to change?



I. Diminishing returns versus thresholds
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II: The Voter model, “Tell me what to think”
V. Sood, S. Redner, Phys. Rev. Lett. 94, 2005.

• At each time step in the process, pick a node at random.

• That node picks a random neighbor, and adopts the opinion of the neighbor.

• Ultimately, only one opinion prevails. The high degree nodes (hubs) win.

Degree distribution

• Invasion percolation(the “bully” model) yields the opposite: leaf nodes propagate opinions.



III: “The Naming Game” / open minded individuals
Steels, Art. Life 1995; Barrat et al., Chaos 2007; Baronchelli et al., Int. J. Mod. Phys. 2008.

• Originally introduced for linguistic convergence. Two opinions, A and B.

• And each individual can hold A, B, or {A,B}.

• Exchange opinions with neighbors and update



The impact of Zealots
Committed individuals who will never change opinions

WAAGEN, VERMA, CHAN, SWAMI, AND D’SOUZA PHYSICAL REVIEW E 91, 022811 (2015)

the dynamics occur. A few previous works have considered
higher-dimensional analogs of some opinion dynamics mod-
els. For example, in the continuous-valued case, Ref. [22]
studies higher-dimensional analogs of the standard consensus
problem under linear update. The authors consider the time
to consensus as a function of dimension. Reference [23]
shows through detailed simulations that the chance of a
“vast-majority” consensus increases with dimension, but so
do the number of minority opinions. There is even less work
on higher-dimensional analogs in the discrete opinion case.
For example, Ref. [24] considers higher-dimensional versions
of the majority-rule model. The work in [25] also studies
the majority-rule model in higher-dimensional lattices, finding
deviations from predicted mean field behavior for d = 4 and
uses simulations to establish the approximate values of the
critical exponent for up to d = 7, showing that these values
agree well with mean field theory.

The rest of this paper is organized as follows. We first
begin in Sec. II by presenting the basic update mechanism
and present the concrete rule table for the case of the two
opinion naming game. The case of k opinions, k > 2, is a
straightforward extension. In Sec. III, we provide a derivation
of the general mean field equations for arbitrary k, which is
one of the contributions of this work. Section IV details our
primary contribution, which is the computation of steady states
and critical points in two important special cases for arbitrarily
high values of k. In Sec. V, we introduce a low-dimensional
model which is very similar to the naming game yet more
amenable to analysis.

II. MODEL, ASSUMPTIONS, PROBLEM FORMULATION

We study the naming game using the same interaction
model presented in Xie et al. [12] and using notation from
Ref. [13]. Consider the general situation of a discrete opinion
space with k opinions where individuals can hold multiple
opinions. Define O = {Om, m = 1, . . . ,k} as the set of all
possible opinions. Let Iℓ(t) denote the set of opinions held by
node ℓ at time t , and let Nℓ(t) denote its neighbors, i.e., with
whom it can communicate or interact directly at time t [note
that in the mean field case that we study here, Nℓ(t) is the
set of all nodes in the graph]. At each discrete time step, an
agent, say i, is selected randomly and randomly selects one of
its neighbors, say j , with which to interact. Given node i is
selected at time t , the probability it chooses j is thus 1/|Ni(t)|.
Node i randomly chooses one opinion Om from its set of
opinions Ii(t) with uniform probability 1/|Ii(t)| and chooses
it for discussion with j . If j already has Om in its own set, then
both agree upon Om and both of them discard the rest of the
opinions from their sets; otherwise, j adds Om to its set. If the
initiator is a zealot, it does not change its opinion; similarly, if
the responder is a zealot, it does not change its opinion. The
interaction model for the general case is described by

(Ii,Ij )
Om→ (Om,Om), if Om ∈ Ij (1)
Om→ (Ii,Ij ∪ {Om}), if Om ̸∈ Ij and j is not a zealot

(2)
Om→ (Ii,Ij ), otherwise. (3)

In particular, note that when a common opinion is found
between speaker and listener, it becomes the sole opinion
adopted by both.

The dynamics of the naming game model can be approxi-
mated in the mean field by a system of differential equations.
For example, in the two opinion case (i.e., the binary naming
game) in the equations below, x and y refer to the fraction
of nodes which have opinions A and B, respectively, and
z is the fraction of nodes which have both opinions A and
B. The zealotry parameters p and q describe the fraction
of zealots having opinions A and B, respectively. Note that
x + y + z = 1, so the zealots are included in the variables
x and y. These equations describe the mean field evolution
over time of the naming game, and can be used to determine
the expected values of x, y, and z over time as described in
Sec. III C:

x ′ = z

(
x + z + p

2

)
− y(x − p),

y ′ = z

(
y + z + q

2

)
− x(y − q),

z = 1 − x − y.

It is straightforward to calculate the steady states by setting
x ′ = y ′ = 0, and there are two special cases in which the steady
state solutions can be expressed concisely:

(1) The case in which q = 0 and hence there are no zealots
representing opinion B. In this case, a phase transition occurs
as p is increased at a critical point pc ≈ 0.1. In the subcritical
case where p < pc it is possible to have y > x in steady state.
In the supercritical case where p > pc, it is guaranteed that
x > y in steady state [9].

(2) The case in which p = q and hence the number of
zealots representing opinions A and B are equal. A phase
transition also occurs in this case at a different critical point
pc =

√
10 − 3. There is always a steady state solution in which

x = y, but when p < pc this solution is unstable and two other
stable solutions exist in which, respectively, x > y and x < y.
When p > pc, the only steady state solution is x = y, which
is stable [9].

A. Challenge of high dimensionality

Extending the binary naming game model to higher dimen-
sions leads to an exponential blowup in the dimensionality of
the opinion space, primarily because of the undecideds, i.e.,
those holding multiple opinions. To see this, note that for k
unique opinions, the “decideds” can only be of k unique types,
but the undecideds may have any subset of the k opinions that
has cardinality greater than or equal to 2. Thus, when there are k
possible distinct opinions, the total number of possible unique
opinion states (decided plus undecided) is 2k − 1. For example,
if the number of opinions is k = 4, the possible opinion states
are A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD,
ACD, BCD, and ABCD where the first four are decideds
and the remaining are undecideds. Explicitly deriving the
governing system of mean field equations and then computing
the resulting steady state values for all possible states for even
moderate k is tedious at best. One significant contribution of
this paper is to provide general mean field equations for all k.

022811-2

• p is fraction of A zealots; q is fraction of B zealots.

• Voter model: A finite number of zealots can sway the outcome.

• Naming game: A small fraction of zealots can sway the outcome.

• Naming game with multiple choices, k:

Operating systems; cell phones; political parties; etc

– Zealots of only one kind: Quickly obey the zealot.
– Equal fractions of zealots of all kinds: Quickly reach stalemate.



More formal analysis .....



Diffusion, Cascade behaviors, and influential nodes
Part I: Ensemble models

Generating functions / Master equations / giant components

• Contact processes / similar to biological epidemic spreading

• Heterogeneity due to node degree
(not due to different node preferences)

• Epidemic spreading

• Opinion dynamics

• Social networks: Watts PNAS 2001 (threshold model; no
global cascade region)



Diffusion, Cascade behaviors, and influential nodes
Part II: Contact processes with individual node preferences

• Long history of empirical / qualitative study in the social
sciences (Peyton Young, Granovetter, Martin Nowak ...;
diffusion of innovation; societal norms)

• Recent theorems: “network coordination games” (bigger
payout if connected nodes in the same state)
(Kleinberg, Kempe, Tardos, Dodds, Watts, Domingos)

• Finding the influential set of nodes, or the k most influential.
Often NP-hard and not amenable to approximation algorithms

• Key distinction:
– thresholds of activation (leads to unpredictable behaviors)
– diminishing returns (submodular functions nicer)



Diffusion, Cascade behaviors, and influential nodes
Part III: Markov chains and mixing times

• New game-theoretic approaches (general coordination games)
– Results in an Ising model.
– Montanari and Saberi PNAS 2010.

• Studies using techniques from Parts I and II suggest:
– Innovations spread quickly in highly connected networks.
– Long-range links benefit spreading.
– High-degree nodes quite influential (enhance spreading).

• Studies using techniques from Part III suggest:
– Innovations spread quickly in locally connected networks.
– Local spatial coordination enhances spreading (having a
spatial metric; graph embeddable in small dimension).
– High-degree nodes slow down spreading.



Part I. Ensemble approaches

• A. Master equations (Random graph evolution, cluster aggregation)

• B. Network configuration model

• C. Generating functions

– Degree distribution (fraction of nodes with degree k, for all k)

– Degree sequence (A realization, N specific values drawn from Pk)



A. Network Configuration Model
Degree sequence given

. . . 

• Bollobas 1980; Molloy and Reed 1995, 1998.

• Build a random network with a specified degree sequence.

• Assign each node a degree at the beginning.

• Random stub-matching until all half-edges are partnered.
(Make sure total # edges even, of course.)

• Self-loops and multiple edges possible, but less likely as
network size increases.

HW 4b – build a configuration model and analyze percolation and spreading.



B. Generating functions:
Properties of the ensemble of configuration model RGs

Determining properties of the ensemble of all graphs with a given
degree distribution, Pk.

• The basic generating function: G0(x) =
∑
k Pkx

k

Note, evaluate at x = 1: G0(1) =
∑
k Pk = 1.

• The moments of Pk can be obtained from derivatives of G0(x):

First derivative:

G′0(x) ≡ d
dxG0(x) =

∑
k kPkx

(k−1)

Evaluate at x = 1, G′0(1) ≡ d
dxG0(x)

∣∣
x=1

=
∑
k kPk (the mean)



Calculating moments

• Base: G0(1) =
∑
k Pk = 1 (it is the sum of probabilities).

• First moment, 〈k〉 ≡∑k kPk = G′0(1)

(And note xG′0(x) =
∑
k kPkx

k)

• Second moment,
〈
k2
〉
≡∑k k

2Pk

d
dx(xG

′
0(x)) =

∑
k k

2Pkx
(k−1)

So d
dx(xG

′
0(x))

∣∣
x=1

=
∑
k k

2Pk

(And note x d
dx(xG

′
0(x)) =

∑
k k

2Pkx
k)

• The n-th moment

〈kn〉 ≡∑k k
nPk =

(
x d
dx

)n
G0(x)

∣∣∣
x=1



Generating functions for the giant component of a random
graph

Newman, Watts, Strogatz PRE 64 (2001)

With the basic generating function in place, can build on it to
calculate properties of more interesting distributions.

1. G.F. for connectivity of a node at edge of randomly chosen
edge. Which enables calculating:

2. G.F. for size of the component to which that node belongs.
Which enables calculating:

3. G.F. for size of the component to which an arbitrary node
belongs.



Following a random edge

• k times more likely to follow edge to a node of degree k than a
node of degree 1. Probability random edge is attached to node
of degree k:

mk = kPk/
∑
k kPk = kPk/ 〈k〉

• There are k − 1 other edges outgoing from this node.
(Called the “excess degree”)

• Each of those leads to a node of degree k′ with probability m′k.

304 Generating functions formalism

reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.

(Circles denote isolated nodes, squares components of unknown size.)



What is the GF for the excess degree?
(Build up more complex from simpler)

• Let qk denote the probability of following an edge to a node with
excess degree of k: qk = [(k + 1)Pk+1] / 〈k〉

• The associated GF

G1(x) =
1

〈k〉
∞∑
k=0

(k + 1)Pk+1x
k

=
1

〈k〉
∞∑
k=1

kPkx
k−1

=
1

〈k〉G
′
0(x)

• Recall the most basic GF: G0(x) =
∑
k Pkx

k



H1(x), Generating function for probability of size of
component reached by following random edge

(Note: subscript 0 on GF denotes node property, 1 denotes edge property)

304 Generating functions formalism

reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.

H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]
2 + xq3[H1(x)]

3 · · ·

(A self-consistency equation. We assume a tree network.)

Note also that H1(x) = x
∑
k qk[H1(x)]

k = xG1(H1(x))



Aside 1: Self-consistency equations
Graphical solution

• See HW 1b: Self-consistency
for ER giant component

S = 1− e−〈k〉S

• Solve for S(〈k〉) (see Fig a)
and plot result in Fig b.
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This equation provides the size of the giant component S in function of 
<k> (Figure 3.18). While (3.32) looks simple, it does not have a closed solu-
tion. We can solve it graphically by plotting  the right hand side of (3.32) as 
a function of S for various values of <k>. To have a nonzero solution, the 
obtained curve must intersect with the dotted diagonal, representing the 
left hand side of (3.32). For small <k> the two curves intersect each other 
only at S = 0, indicating that for small <k> the size of the giant component 
is zero. Only when <k> exceeds a threshold value, does a non-zero solution 
emerge.

To determine the value of <k> at which we start having a nonzero solu-
tion we take a derivative of (3.32), as the phase transition point is when the 
r.h.s. of (3.32) has the same derivative as the l.h.s. of (3.32), i.e. when

Setting S = 0, we obtain that the phase transition point is at <k> = 1 (see 
also ADVANCED TOPICS 3.F).

RANDOM NETWORKS GIANT COMPONENT

(3.32)

(3.33)

S e = 1 .k S− −〈 〉

d
dS

e1 1,k S( )− =−〈 〉

k e 1.k S〈 〉 =−〈 〉

(a) The three purple curves correspond to y = 
1-exp[ -<k> S ] for <k>=0.5, 1, 1.5. The green 
dashed diagonal corresponds y = S, and 
the intersection of the dashed and purple 
curves provides the solution to (3.32). For 
<k>=0.5 there is only one intersection at  S 
= 0, indicating the absence of a giant com-
ponent. The <k>=1.5 curve has a solution 
at S = 0.583 (green vertical line). The <k>=1 
curve is precisely at the critical point, repre-
senting the separation between the regime 
where a nonzero solution for S exists and 
the regime where there is only the solution 
at S = 0. 

(b) The size of the giant component in function 
of <k> as predicted by  (3.32). After [33].

Figure 3.18

Graphical Solution 

(a)
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Aside 2: Powers property

The PGF for the sum of m instances of random variable k is the
PGF for k to the m’th power.

PGF for
∑
m k is [H1(x)]

m

• Easiest to see if m = 2 (sum over two realizations)

• [G0(x)]
2
=
[∑

k Pkx
k
]2

=
∑
jk pjpkx

j+k

= p0p0x
0+(p0p1+ p1p0)x+(p0p2+ p1p1+ p2p0)x

2+ · · ·

• The coefficient multiplying power n is the sum of all products
pipj such that i+ j = n.



H0(x), Generating function for distribution in component
sizes starting from arbitrary node
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reach it, is thus qk = (k +1)Pk+1/〈k〉, and the corresponding generating function therefore
reads

G1(x) =
∑

k

(k + 1)Pk+1

〈k〉
xk = 1

〈k〉
G ′

0(x). (A2.5)

The definition and properties of generating functions allow us now to deal with the
problem of percolation in a random network: let us call H1(x) the generating function
for the distribution of the sizes of the connected components reached by following a
randomly chosen edge. Note that H1(x) considers only finite components and therefore
excludes the possible giant cluster. We neglect the existence of loops, which is indeed
legitimate for such finite components. The distribution of sizes of such components can
be visualized by a diagrammatic expansion as shown in Figure A2.1: each (tree-like)
component is composed by the node initially reached, plus k other tree-like components,
which have the same size distribution, where k is the number of outgoing links of the
node, whose distribution is qk . The probability that the global component QS has size S
is thus

QS =
∑

k

qk Prob(union of k components has size S − 1) (A2.6)

(counting the initially reached node in S). The generating function H1 is by definition

H1(x) =
∑

S

QS x S, (A2.7)

and the distribution of the sum of the sizes of the k components is generated by Hk
1 (as

previously explained for the sum of degrees), i.e.
∑

S

Prob(union of k components has size S) · x S = (H1(x))k . (A2.8)

A

B

Fig. A2.1. Diagrammatic visualization of (A) Equation (A2.9) and (B) Equa-
tion (A2.10). Each square corresponds to an arbitrary tree-like cluster, while the
circle is a node of the network.

H0(x) = xP0 + xP1H1(x) + xP2[H1(x)]
2 + xP3[H1(x)]

3 · · ·

= x
∑
k Pk[H1(x)]

k = xG0(H1(x))

• Can take derivatives of H0(x) to find moments of component
size distribution!

• Note we have assumed a tree-like topology.



Expected size of a component starting from arbitrary node

• 〈s〉 = d
dxH0(x)

∣∣
x=1

= d
dxxG0(H1(x))

∣∣
x=1

= G0(H1(1)) +
d
dxG0(H1(1)) · ddxH1(1)

Since H1(1) = 1, (i.e., it is the sum of the probabilities)

〈s〉 = 1 +G′0(1) ·H ′1(1) (Recall 〈k〉 = G′0(1))

• Recall (three slides ago) H1(x) = xG1(H1(x))

so H ′1(1) = 1 +G′1(1)H
′
1(1) =⇒ H ′1(1) = 1/(1−G′1(1))

And thus, 〈s〉 = 1 +
G′0(1)

1−G′1(1)



• Now evaluating the derivative:

G′1(x) =
d

dx

1

〈k〉G
′
0(x) =

1

〈k〉
d

dx

∑
k

kPkx
(k−1)

=
1

〈k〉
∑
k

k(k − 1)Pkx
(k−2)

• Evaluate at x = 1

G′1(1) =
1

〈k〉
∑
k

k(k − 1)Pk =
1

〈k〉
[〈
k2
〉
− 〈k〉

]



Expected size of a component starting from arbitrary node

• 〈s〉 = 1 +
G′0(1)

1−G′1(1)

• G′0(1) = 〈k〉

• G′1(1) = 1
〈k〉
[〈
k2
〉
− 〈k〉

]

〈s〉 = 1 +
G′0(1)

1−G′1(1)
= 1 + 〈k〉2

2〈k〉−〈k2〉



Emergence of the giant component

• 〈s〉 → ∞

• This happens when: 2 〈k〉 =
〈
k2
〉
, which can also be written as

〈k〉 =
(〈
k2
〉
− 〈k〉

)
• This means expected number of nearest neighbors 〈k〉,

first equals expected number of second nearest neighbors(〈
k2
〉
− 〈k〉

)
.

• Can also be written as
〈
k2
〉
− 2 〈k〉 = 0, which is

the famous Molloy and Reed criteria*, giant emerges when:∑
k k (k − 2)Pk = 0.

*GF approach is easier than Molloy Reed!



GFs widely used in “network epidemiology”

• Fragility of Power Law Random Graphs to targeted node
removal / Robustness to random removal
– Callaway PRL 2000
– Cohen PRL 2000

• Onset of epidemic threshold:
– C Moore, MEJ Newman, Physical Review E, 2000 – MEJ
Newman - Physical Review E, 2002
– Lauren Ancel Meyers, M.E.J. Newmanb, Babak Pourbohlou,
Journal of Theoretical Biology, 2006
– JC Miller - Physical Review E, 2007

• Information flow in social networks
F Wu, BA Huberman, LA Adamic, Physica A, 2004.

• Cascades on random networks
Watts PNAS 2002.


