Content Delivery Networks

Shaxun Chen April 21, 2009

Outline

- Introduction to CDN
- An Industry Example: Akamai
- A Research Example: CDN over Mobile Networks
- Conclusion

Outline

- ➤ Introduction to CDN
- An Industry Example: Akamai
- A Research Example: CDN over Mobile Networks
- Conclusion

What is Content Delivery Network

- A content delivery network (CDN):
 - -- a system of computers (computing devices) networked together (across the Internet) that cooperate to deliver content to end users, in order to improve performance, scalability, and cost efficiency.
 - Distributed system
 - Transparent to end users

Motivation

- Request load overwhelms the web sites!
 - Web server processing ability
 - Bandwidth
 - Back-end transaction-processing infrastructure

1.5 billion visits per day

0.2 billion videos viewed every day

5.4 billion visits per day

ALL YOUR VIDEO ARE BELONG TO US.

- If ..., customers will complain:
 - Speed
 - Availability

Approaches to Delivering Content

Approaches to Delivering Content

Approaches to Delivering Content

Concepts or Terms

- Servers
 - Origin server
 - Surrogate servers / Edge servers
- Roles
 - CDN providers: Akamai, Digital Island...
 - CDN customers: Yahoo, AOL, CNN...
 - Clients / end users

Advantages of CDN

- Reduce (backbone) bandwidth costs
- Improve end user performance
 - Shorter latency / response quickly
 - Less delay jitter
 - Higher bandwidth
- Increase global availability of content

CDN vs. Web Proxies

First:

- Web proxies store most frequently or most recently requested content; work in a passive way
- What CDNs store is decide by CDN administrators

Second:

- Web proxies only handle static web pages
- Dynamic content / secured content / streaming content (CDN handles them using ESI)

Third:

- Proxies work on a local basis
- CDNs provide more availability

Best Surrogate Server

- From end-users' (clients) point of view, which surrogate server is the best?
 - Nearest (physical distance)
 - Speed (bandwidth)
 - Delay (round-trip time), delay jitter
 - Reliability (packet loss rate)
 - Data transmission cost
 - Server load
 - Combinations of the above

Placement of Surrogate Servers [1]

- ♦ We have N possible locations at edge of the Internet, and are able to afford K (K<N) surrogate servers, how to place them to minimize the total cost?
- Cost:
 - metrics
 - Refers to "choose best surrogate server"
- ◆ Formalization: (Minimum *K*-Median Problem)
 - Given *N* points, we must select *K* of these to be centers (surrogate servers), and then assign each input point *j* to the selected center that is closest to it. If location *j* is assigned to a center *i*, we incur a cost d*C_{ij}*. The goal is to select *K* centers so as to minimize the sum of the assignment costs.
 - NP-hard

^[1] L. Qiu, et al., On the Placement of Web Server Replicas. Infocom 2001, Alaska, US.

Tree-based Algorithm [2]

- Two assumptions
 - The network structure is a tree; the origin server is the root of the tree
 - Clients request from the closest surrogate server on their path toward the root
- Based on these two assumptions, we are able to get a optimum placement within O(N³K²)

^[2] B. Li, et al., On the Optimal Placement of Web Proxies in the Internet. Infocom 1999, New York, US.

Greedy Algorithm

Chooses the first center (with minimum cost) among N places; chooses next center among rest of N-1 places

Greedy Algorithm

Chooses the first center (with minimum cost) among N places; chooses next center among rest of N-1 places

Greedy Algorithm

♦ Chooses the first center (with minimum cost) among N places; chooses next center among rest of N-1 places

- Places surrogate servers near the clients generating the greatest load.
- ♦ Sorts the *N* potential sites according to the amount of traffic generated within their vicinity, and places the surrogate server at the top *K* sites.
- ◆ A's vicinity is the circle centered at A with some radius. We change the radius, repeat the algorithm and choose the best one as output
- Time complexity: $N^2 + N \log N + N K \approx O(N^2)$

- Places surrogate servers near the clients generating the greatest load.
- ♦ Sorts the *N* potential sites according to the amount of traffic generated within their vicinity, and places the surrogate server at the top *K* sites.
- ◆ A's vicinity is the circle centered at A with some radius. We change the radius, repeat the algorithm and choose the best one as output
- ♦ Time complexity: $N^2 + N \log N + N K \approx O(N^2)$

- Places surrogate servers near the clients generating the greatest load.
- ◆ Sorts the *N* potential sites according to the amount of traffic generated within their vicinity, and places the surrogate server at the top *K* sites.
- ◆ A's vicinity is the circle centered at A with some radius. We change the radius, repeat the algorithm and choose the best one as output
- Time complexity: $N^2 + N \log N + N K \approx O(N^2)$

Random Algorithm

- Chooses K sites from N places randomly; performs 10 times, and get the best result.
- ♦ Time complexity: O(NK)

Evaluation Results

- ♦ In a tree-structure network, greedy ≈ tree-based > hot spot > random
 - The paper says greedy is slightly better, why?
- In an arbitrary network, greedy > hotpot > tree > random

Server Placement in Real World

- Assumptions hold true?
 - Tree
 - Each client uses a single replica (surrogate server)
- Policy issues

How to Redirect

- URL rewriting
 - Origin server redirects clients to different surrogate servers by rewriting the page's URL links
 - Dynamic
 - Static
 - Bottleneck
- Domain Name System (DNS) redirection
 - DNS server direct requests to CDN

Select a CDN

- From a customer's point of view, which CDN to choose?
 - Cache hit ratio
 - Saved bandwidth
 - Surrogate server utilization
 - Reliability
 - **—**

Outline

- Introduction to CDN
- ➤ An Industry Example: Akamai
- A Research Example: CDN over Mobile Networks
- Conclusion

Overview of Akamai

- Launched in 1999
- Over 12,000 servers in 62 countries
- Serves Yahoo!, Apple, AOL.....
- How Akamai works
 - Domain Name System (DNS) redirection

Normal DNS Working Process

How DNS Redirection Works

How DNS Redirection Works (cont.)

- What Akamai does
 - Manage customers' DNS server
 - Pretend to be a normal DNS server
 - But more complex inside
 - Probing
 - Selecting
 - Load balancing
- Example: visit Yahoo via Akamai

Selecting Criteria

- Server must be able to satisfy the request
 - e.g. can handle streaming media?
 - Has the content?
- Server health
- Server load
- Network condition
 - Packet loss rate
 - Bandwidth
- Client location

Different Types of Content

- Static content
 - Lifetimes
 - Special features
- Dynamic content
 - ESI: break a dynamic page into fragments
 - Assemble dynamic pages at surrogate servers
- Streaming media
 - Deliver packets without significant delay or jitter
- Content unreachable
 - Split the TCP connection into two separate connections

Outline

- Introduction to CDN
- An Industry Example: Akamai
- ➤ A Research Example: CDN over Mobile Networks
- Conclusion

A Research Example: CDN over MANET [3]

- In a more general sense, CDN refers to
 - any overlay network built for the purpose of facilitating content delivery
- Background:
 - Pervasive computing / ubiquitous computing
 - Goal: make computers work in a more intelligent way
 - Decrease users' intended input
 - Representative applications, Examples

^[3] S. Chen, et al., Application based Distance Measurement for Context Retrieval in Ubiquitous Computing. MobiQuitous 2007, Philadelphia, US.

Hardware Environment

- Sensors, computers, smart phones and PDAs
 - Both fixed and mobile nodes
 - Each node may serve as data producer and data consumer
- We want to improve the data retrieval performance, however, it's impossible to store replicas on every node
 - Limited storage
 - Limited energy
 - Communication costs

Context Clustering

- Different types of data (contexts)
 - Light / sound / temperature / humidity / user's schedule / location...
- Logical distance between contexts
 - Which contexts are often used (queried) by applications simultaneously?

$$\cos(S,T) = \frac{\sum_{j=1}^{q} s_{j} t_{j}}{\sqrt{\sum_{j=1}^{q} s_{j}^{2} \sqrt{\sum_{j=1}^{q} t_{j}^{2}}}}$$

$$D(S,T) = \sin(S,T) = \sqrt{1 - \cos^2(S,T)}$$

Replica Placement

♦ If the logical distance between two types of contexts is lower than a threshold, they cache each other, or shortcuts are built between them

Outline

- Introduction to CDN
- An Industry Example: Akamai
- A Research Example: CDN over Mobile Networks
- **≻** Conclusion

Conclusion

- CDN is a overlay network which aims at efficiently delivering content.
- Open issues
 - CDN on P2P networks / mobile networks
 - Authentication/ security issues
 - . . .

