Phase Transitions in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability

Ryan James

Department of Physics - UC Davis

April 27, 2009

Conclusions

Old School New School Non-Physics

Outline

Historical Prospective

- Old School
- New School
 - Stat Mech
 - Ising Model
 - Renormalization & Universality
- Non-Physics
- 2 Dynamic Percolation
- 3 Combinatoric Problems

4 Conclusions

Old School New School Non-Physics

Traditional Thermodynamics

Classical phases

Classical transitions

Figure: Graciously stolen from Wikipedia.org

17 ▶

Old School New School Non-Physics

Traditional Thermodynamics

Classical phases
 Solid

Classical transitions

Figure: Graciously stolen from Wikipedia.org

17 ▶

Old School New School Non-Physics

Traditional Thermodynamics

- Classical phases
 - Solid
 - Liquid
- Classical transitions

Figure: Graciously stolen from Wikipedia.org

Old School New School Non-Physics

Traditional Thermodynamics

- Classical phases
 - Solid
 - Liquid
 - Gas
- Classical transitions

Figure: Graciously stolen from Wikipedia.org

Old School New School Non-Physics

Traditional Thermodynamics

- Classical phases
 - Solid
 - Liquid
 - Gas
- Classical transitions
 - Melting

Figure: Graciously stolen from Wikipedia.org

Old School New School Non-Physics

Traditional Thermodynamics

- Classical phases
 - Solid
 - Liquid
 - Gas
- Classical transitions
 - Melting
 - Freezing

Figure: Graciously stolen from Wikipedia.org

Old School New School Non-Physics

Traditional Thermodynamics

- Classical phases
 - Solid
 - Liquid
 - Gas
- Classical transitions
 - Melting
 - Freezing
 - Vaporization

Figure: Graciously stolen from Wikipedia.org

Old School New School Non-Physics

Traditional Thermodynamics

- Classical phases
 - Solid
 - Liquid
 - Gas
- Classical transitions
 - Melting
 - Freezing
 - Vaporization
 - Condensation

Figure: Graciously stolen from Wikipedia.org

Old School New School Non-Physics

Traditional Thermodynamics

- Classical phases
 - Solid
 - Liquid
 - Gas
- Classical transitions
 - Melting
 - Freezing
 - Vaporization
 - Condensation
 - Sublimation

Figure: Graciously stolen from Wikipedia.org

Old School New School Non-Physics

Traditional Thermodynamics

- Classical phases
 - Solid
 - Liquid
 - Gas
- Classical transitions
 - Melting
 - Freezing
 - Vaporization
 - Condensation
 - Sublimation
 - Deposition

Figure: Graciously stolen from Wikipedia.org

< 1 →

Old School New School Non-Physics

Statistical Mechanics

Old School New School Non-Physics

Statistical Mechanics

With the advent of statistical mechanics by the likes of Boltzmann, Gibbs, Maxwell, and others, new meaning was eventually given to the notion of phase transitions.

• Order

Old School New School Non-Physics

Statistical Mechanics

With the advent of statistical mechanics by the likes of Boltzmann, Gibbs, Maxwell, and others, new meaning was eventually given to the notion of phase transitions.

- Order
 - First

A D

Old School New School Non-Physics

Statistical Mechanics

With the advent of statistical mechanics by the likes of Boltzmann, Gibbs, Maxwell, and others, new meaning was eventually given to the notion of phase transitions.

- Order
 - First
 - Second

A D

Old School New School Non-Physics

Statistical Mechanics

With the advent of statistical mechanics by the likes of Boltzmann, Gibbs, Maxwell, and others, new meaning was eventually given to the notion of phase transitions.

- Order
 - First
 - Second
 - Infinite

A 1

Old School New School Non-Physics

Statistical Mechanics

- Order
 - First
 - Second
 - Infinite
- Critical Phenomena

Old School New School Non-Physics

Statistical Mechanics

- Order
 - First
 - Second
 - Infinite
- Critical Phenomena
 - Order Parameters

Old School New School Non-Physics

Statistical Mechanics

- Order
 - First
 - Second
 - Infinite
- Critical Phenomena
 - Order Parameters
 - Correlation Length

Old School New School Non-Physics

Statistical Mechanics

- Order
 - First
 - Second
 - Infinite
- Critical Phenomena
 - Order Parameters
 - Correlation Length
 - Critical Slowing

Old School New School Non-Physics

Statistical Mechanics

- Order
 - First
 - Second
 - Infinite
- Critical Phenomena
 - Order Parameters
 - Correlation Length
 - Critical Slowing
 - Scaling Exponents

Old School New School Non-Physics

Statistical Mechanics

- Order
 - First
 - Second
 - Infinite
- Critical Phenomena
 - Order Parameters
 - Correlation Length
 - Critical Slowing
 - Scaling Exponents
 - Renormalization

Old School New School Non-Physics

Statistical Mechanics

- Order
 - First
 - Second
 - Infinite
- Critical Phenomena
 - Order Parameters
 - Correlation Length
 - Critical Slowing
 - Scaling Exponents
 - Renormalization
 - Universality

Old School New School Non-Physics

Ising Model: System Description

The Ising model is one of the most extensively studied models in physics. It consists of a lattice with a spin located at each site. These spins, S_i , take a value of $\pm \frac{1}{2}$.

$$egin{aligned} E &= -\sum_{\langle i,j
angle} J_{ij}S_iS_j = -J\sum_{\langle i,j
angle}S_iS_j\ S_i \in \{+rac{1}{2},-rac{1}{2}\} \end{aligned}$$

A D

Old School New School Non-Physics

Ising Model: Phase Transition

At temperatures $T > T_c$ we see that the magnetization (average spin of the lattice) m = 0. However, for $T < T_c$, $m \neq 0$. The most interesting behavior occurs when $T \approx T_c$. In this regime things scale according to power laws.

▲ 伊 ▶ ▲ 三 ▶

Old School New School Non-Physics

Renormalization & Universality

- Renormalization
 - Scale-free
 - Power laws
- Universality
 - The Ising critical point
 - Bethe Lattice / Cayley Tree percolation
 - H₂O critical point

A D

Old School New School Non-Physics

Erdös-Réyni Random Graphs

Random graphs were shown to exhibit phase transitions, from a phase with a slowly growing $(N^{\frac{2}{3}})$ largest connected component to a phase where the largest connected component (known now as the giant component) is faster growing (*cN*).

Traditional Percolation Dynamic Percolation

Outline

- 2 Dynamic Percolation
 Traditional Percolation
 Dynamic Percolation
- 3 Combinatoric Problems

4 Conclusions

Traditional Percolation Dynamic Percolation

Static Percolation

- Start with an empty lattice
- Populate the sites with probability *p*
- If p < p_c, only clusters of finite size exist
- If p > p_c, an infinite or percolating cluster exists

Traditional Percolation Dynamic Percolation

Definitions

- A network consists of N nodes and M edges
- $\bullet\,$ Each edge has a lifetime $\tau\,$ drawn from a Poisson distribution
- Once an edge's lifetime has expired, it is removed from the network and a new edge is placed between two nodes at random
- A 'walker' takes unit time to transverse an edge, and may only linger at a node for a limited time

Traditional Percolation Dynamic Percolation

Dynamics

Two paths through the dynamic network. The red path, though longer, has lower weight than the dashed path.

Traditional Percolation Dynamic Percolation

p_c Dependency & Critical Behavior

- The value of p_c depends on the value of < r >, the average rate at which edges turn over
- The size of the giant component, however, does not depend on *p_c*
- Thus the critical behavior is independant of < r >

Traditional Percolation Dynamic Percolation

Differences from Static

- In a static network, the size of the giant cluster scales as $N^{\frac{2}{3}}$
- It is found that in the dynamic network, the giant cluster scales as *N*
- This is due to the dynamic network having effectively $N^{\frac{3}{2}}$
- This is because the temporal axis has a depth of $N^{\frac{1}{2}}$, making the full number of states $NN^{\frac{1}{2}} = N^{\frac{3}{2}}$

• ...and thus
$$(N^{\frac{3}{2}})^{\frac{2}{3}} = N$$

Traditional Percolation Dynamic Percolation

Universality Class

And so, since the critical exponents for the dynamic network are different than the static network, they belong to different universality classes!

K-Sat

Outline

2 Dynamic Percolation

æ

K-Sat

Definition

K-SAT:

- Given the logical AND of *M* clauses...
- Each consisting of logical OR of K boolean varialbles...
- Drawn from a total set of N boolean variables...
- Is there an assignment of values to those *N* for which each of the *M* clauses evaluates to True?

Example:

$$(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_3)$$

is satisfied by

$$(x_1, x_2, x_3) = (\top, \top, \top)$$

K-Sat

How difficult is K-SAT?

K-SAT ($K \ge 3$) belongs to a complexity class called NP-Complete. That is, it can be solved by a non-deterministic Turing machine is time polynomial in the size of the input. Put another way, if someone gives you a possible solution you can test it in polynomial time (linear in this case).

But the question arises – is K-SAT *always* hard?

K-Sat

Sometimes K-SAT is easy!

- If the ratio of clauses to variables is low, it's easy to find a solution as there are very few restrictions
- If the ratio of clauses to variables is high, it's very unlikely that there is a solution as the variables are over-constrained
- And somewhere in the middle (depending on K) there is a very sharp transition, and this is where K-SAT is very difficult

K-Sat

Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

K-Sat

Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

• Assign each boolean variable to a spin S_i , where

K-Sat

Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

• Assign each boolean variable to a spin S_i , where

•
$$S_i = +1$$
 if $x_i = \top$

K-Sat

Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

• Assign each boolean variable to a spin S_i , where

•
$$S_i = +1$$
 if $x_i = \top$

•
$$S_i = -1$$
 if $x_i = \bot$

Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

• Assign each boolean variable to a spin S_i , where

•
$$S_i = +1$$
 if $x_i = \top$

•
$$S_i = -1$$
 if $x_i = \bot$

• Average over all "energy-minimizing" assignments – that is, those assignments that violate the fewest clauses

Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

- Assign each boolean variable to a spin S_i , where
 - $S_i = +1$ if $x_i = \top$
 - $S_i = -1$ if $x_i = \bot$
- Average over all "energy-minimizing" assignments that is, those assignments that violate the fewest clauses
- Call m_i the average value of S_i over all ground states:

Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

- Assign each boolean variable to a spin S_i , where
 - $S_i = +1$ if $x_i = \top$
 - $S_i = -1$ if $x_i = \bot$
- Average over all "energy-minimizing" assignments that is, those assignments that violate the fewest clauses
- Call m_i the average value of S_i over all ground states:
 - $m_i \approx \pm 1$ for highly constrained variables

Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

- Assign each boolean variable to a spin S_i , where
 - $S_i = +1$ if $x_i = \top$
 - $S_i = -1$ if $x_i = \bot$
- Average over all "energy-minimizing" assignments that is, those assignments that violate the fewest clauses
- Call m_i the average value of S_i over all ground states:
 - $m_i \approx \pm 1$ for highly constrained variables
 - $m_i \approx 0$ for unconstrained variables

K-Sat

Phase Transitions in the Ising-like Model

• Define $f(K, \alpha)$ to be the fraction of constrained variables for an equation with clause-size K and $\alpha = M/N$

K-Sat

Phase Transitions in the Ising-like Model

- Define f(K, α) to be the fraction of constrained variables for an equation with clause-size K and α = M/N
- 2-SAT (Which remember is in P) has a continuous phase transition that is, $f(2, \alpha_c^+) f(2, \alpha_c^-) = 0$

K-Sat

Phase Transitions in the Ising-like Model

- Define f(K, α) to be the fraction of constrained variables for an equation with clause-size K and α = M/N
- 2-SAT (Which remember is in P) has a continuous phase transition that is,
 f(2, α⁺_c) f(2, α⁻_c) = 0
- 3-SAT, however, has a discontinuous phase transition:
 f(3, α⁺_c) f(3, α⁻_c) > 0

K-Sat

Phase Transitions in the Ising-like Model

- Define f(K, α) to be the fraction of constrained variables for an equation with clause-size K and α = M/N
- 2-SAT (Which remember is in P) has a continuous phase transition that is,
 f(2, α⁺_c) f(2, α⁻_c) = 0
- 3-SAT, however, has a discontinuous phase transition:
 f(3, α⁺_c) f(3, α⁻_c) > 0
- The transition from continuous to discontinuous phase transition occurs at $K_c \approx 2.41$

Phase Transitions

K-Sat

Computational Cost in K-SAT

< □ > <

э

K-Sat

Computational Cost in K-SAT

• On this semi-log plot, we see that for $K < K_c$, the computational cost of finding if there is a satisfying assignment grows linearly with *N*. This is consistent with 2-SAT being in P

K-Sat

Computational Cost in K-SAT

- On this semi-log plot, we see that for K < K_c, the computational cost of finding if there is a satisfying assignment grows linearly with N. This is consistent with 2-SAT being in P
- However for K > K_c the cost grows exponentially, which is consistent with 3-SAT being in NP

K-Sat

Another Mapping: K-SAT to CLIQUE

Figure: $(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor \neg x_3)$

▲□ ► ▲ □ ► ▲

K-Sat

Another Mapping: K-SAT to CLIQUE

 Begin by converting K-SAT to 3-SAT (this can be done in polynomial time)

▲ 同 ▶ → 三 ▶

K-Sat

Another Mapping: K-SAT to CLIQUE

- Begin by converting K-SAT to 3-SAT (this can be done in polynomial time)
- Write each clause in a little group

- ● ● ●

K-Sat

Another Mapping: K-SAT to CLIQUE

- Begin by converting K-SAT to 3-SAT (this can be done in polynomial time)
- Write each clause in a little group
- Connect each node to any node that isn't its negation and also isn't in its own group

K-Sat

Another Mapping: K-SAT to CLIQUE

- Begin by converting K-SAT to 3-SAT (this can be done in polynomial time)
- Write each clause in a little group
- Connect each node to any node that isn't its negation and also isn't in its own group
- If there is an M-CLIQUE, then this equation is satisfiable

Outline

- 2 Dynamic Percolation
- 3 Combinatoric Problems

æ

Conclusions

- Phase transitions tend to occur at the most interesting places in parameter space
- They correspond to qualitatively different behavior
- Studying the phase transition can give us valuable insight into how to solve problems, what problems can be solved, and other insights regarding problem spaces with distinct phases