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Ising Model: System Description

The Ising model is one of the most extensively studied models in
physics. It consists of a lattice with a spin located at each site.
These spins, Si , take a value of ±1

2 .

E = −
∑

<i ,j>

JijSiSj = −J
∑

<i ,j>

SiSj

Si ∈ {+
1

2
,−1

2
}
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Ising Model: Phase Transition

At temperatures T > Tc we see that the magnetization (average
spin of the lattice) m = 0. However, for T < Tc , m 6= 0.
The most interesting behavior occurs when T ≈ Tc . In this regime
things scale according to power laws.
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Erdös-Réyni Random Graphs

Random graphs were shown to
exhibit phase transitions, from a

phase with a slowly growing (N
2
3 )

largest connected component to a
phase where the largest connected
component (known now as the giant
component) is faster growing (cN).

Ryan James Phase Transitions



Historical Prospective
Dynamic Percolation

Combinatoric Problems
Conclusions

Traditional Percolation
Dynamic Percolation

Outline

1 Historical Prospective

2 Dynamic Percolation
Traditional Percolation
Dynamic Percolation

3 Combinatoric Problems

4 Conclusions

Ryan James Phase Transitions



Historical Prospective
Dynamic Percolation

Combinatoric Problems
Conclusions

Traditional Percolation
Dynamic Percolation

Static Percolation

Start with an empty lattice

Populate the sites with
probability p

If p < pc , only clusters of finite
size exist

If p > pc , an infinite or
percolating cluster exists
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Definitions

A network consists of N nodes and M edges

Each edge has a lifetime τ drawn from a Poisson distribution

Once an edge’s lifetime has expired, it is removed from the
network and a new edge is placed between two nodes at
random

A ’walker’ takes unit time to transverse an edge, and may only
linger at a node for a limited time
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Dynamics

Two paths through the dynamic
network. The red path, though
longer, has lower weight than the
dashed path.
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pc Dependency & Critical Behavior

The value of pc depends on the
value of < r >, the average rate
at which edges turn over

The size of the giant
component, however, does not
depend on pc

Thus the critical behavior is
independant of < r >
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Differences from Static

In a static network, the size of
the giant cluster scales as N

2
3

It is found that in the dynamic
network, the giant cluster scales
as N

This is due to the dynamic

network having effectively N
3
2

This is because the temporal

axis has a depth of N
1
2 , making

the full number of states
NN

1
2 = N

3
2

...and thus (N
3
2 )

2
3 = N
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Universality Class

And so, since the critical exponents for the dynamic network are
different than the static network, they belong to different
universality classes!
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Definition

K-SAT:

Given the logical AND of M clauses...

Each consisting of logical OR of K boolean varialbles...

Drawn from a total set of N boolean variables...

Is there an assignment of values to those N for which each of
the M clauses evaluates to True?

Example:
(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3)

is satisfied by
(x1, x2, x3) = (>,>,>)
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How difficult is K-SAT?

K-SAT (K ≥ 3) belongs to a complexity class called NP-Complete.
That is, it can be solved by a non-deterministic Turing machine is
time polynomial in the size of the input. Put another way, if
someone gives you a possible solution you can test it in polynomial
time (linear in this case).
But the question arises – is K-SAT always hard?
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Sometimes K-SAT is easy!

If the ratio of clauses to
variables is low, it’s easy to find
a solution as there are very few
restrictions

If the ratio of clauses to
variables is high, it’s very
unlikely that there is a solution
as the variables are
over-constrained

And somewhere in the middle
(depending on K ) there is a
very sharp transition, and this is
where K-SAT is very difficult
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Mapping to an Ising-like Model

We can map K-SAT to an Ising-like model in the following way:

Assign each boolean variable to a spin Si , where

Si = +1 if xi = >
Si = −1 if xi = ⊥

Average over all ”energy-minimizing” assignments – that is,
those assignments that violate the fewest clauses

Call mi the average value of Si over all ground states:

mi ≈ ±1 for highly constrained variables
mi ≈ 0 for unconstrained variables
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Phase Transitions in the Ising-like Model

Define f (K , α) to be the
fraction of constrained variables
for an equation with clause-size
K and α = M/N

2-SAT (Which remember is in
P) has a continuous phase
transition – that is,
f (2, α+

c )− f (2, α−c ) = 0

3-SAT, however, has a
discontinuous phase transition:
f (3, α+

c )− f (3, α−c ) > 0

The transition from continuous
to discontinuous phase
transition occurs at Kc ≈ 2.41

Ryan James Phase Transitions



Historical Prospective
Dynamic Percolation

Combinatoric Problems
Conclusions

K-Sat

Phase Transitions in the Ising-like Model

Define f (K , α) to be the
fraction of constrained variables
for an equation with clause-size
K and α = M/N

2-SAT (Which remember is in
P) has a continuous phase
transition – that is,
f (2, α+

c )− f (2, α−c ) = 0

3-SAT, however, has a
discontinuous phase transition:
f (3, α+

c )− f (3, α−c ) > 0

The transition from continuous
to discontinuous phase
transition occurs at Kc ≈ 2.41

Ryan James Phase Transitions



Historical Prospective
Dynamic Percolation

Combinatoric Problems
Conclusions

K-Sat

Phase Transitions in the Ising-like Model

Define f (K , α) to be the
fraction of constrained variables
for an equation with clause-size
K and α = M/N

2-SAT (Which remember is in
P) has a continuous phase
transition – that is,
f (2, α+

c )− f (2, α−c ) = 0

3-SAT, however, has a
discontinuous phase transition:
f (3, α+

c )− f (3, α−c ) > 0

The transition from continuous
to discontinuous phase
transition occurs at Kc ≈ 2.41

Ryan James Phase Transitions



Historical Prospective
Dynamic Percolation

Combinatoric Problems
Conclusions

K-Sat

Phase Transitions in the Ising-like Model

Define f (K , α) to be the
fraction of constrained variables
for an equation with clause-size
K and α = M/N

2-SAT (Which remember is in
P) has a continuous phase
transition – that is,
f (2, α+

c )− f (2, α−c ) = 0

3-SAT, however, has a
discontinuous phase transition:
f (3, α+

c )− f (3, α−c ) > 0

The transition from continuous
to discontinuous phase
transition occurs at Kc ≈ 2.41

Ryan James Phase Transitions



Historical Prospective
Dynamic Percolation

Combinatoric Problems
Conclusions

K-Sat

Computational Cost in K-SAT

On this semi-log plot, we see
that for K < Kc , the
computational cost of finding if
there is a satisfying assignment
grows linearly with N. This is
consistent with 2-SAT being in
P

However for K > Kc the cost
grows exponentially, which is
consistent with 3-SAT being in
NP
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Another Mapping: K-SAT to CLIQUE

Figure: (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨
x3) ∧ (x1 ∨ x2 ∨ ¬x3)

Begin by converting K-SAT to
3-SAT (this can be done in
polynomial time)

Write each clause in a little
group

Connect each node to any node
that isn’t its negation and also
isn’t in its own group

If there is an M-CLIQUE, then
this equation is satisfiable
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Conclusions

Phase transitions tend to occur at the most interesting places
in parameter space

They correspond to qualitatively different behavior

Studying the phase transition can give us valuable insight into
how to solve problems, what problems can be solved, and
other insights regarding problem spaces with distinct phases

Ryan James Phase Transitions


	Historical Prospective
	Old School
	New School
	Non-Physics

	Dynamic Percolation
	Traditional Percolation
	Dynamic Percolation

	Combinatoric Problems
	K-Sat

	Conclusions

