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FIG. 6: Six modules corresponding to the uppermost branched linear chain of modules depicted in Figure 4. Colors denote
modules as defined by the network information bottleneck algorithm. Again the modules roughly correspond to institutional
affiliations. Over 50% of the blue nodes have one or more affiliations with the institutions based in and around Chicago
(Argonne National Laboratory, University of Illinois at Chicago and University of Notre Dame). 70% of the red nodes are in
England, and 75% of the green nodes are in China, mostly at the Institute of Chemistry Chinese Academy of Sciences, and all
of the cyan nodes are at the Center of Complex Systems Research in Illinois. Both the yellow and magenta modules are mostly
affiliated with the University of Nebraska.

FIG. 7: E. coli gene regulatory network. Largest component of the symmetric version of the E. coli genetic regulatory
network. Colors denoted modules identified by NIB.

Diffusive distributions are but one general class of distributions on a network. A natural generalization of these
ideas is to describe other distributions on a network for which a particular function, energy, or origin is known, and
on which some particular degree of freedom (such as chemical concentration or genetic expression as a function of
time) may be defined.

Finally, we note that while the information bottleneck is a prescription for finding the highest-fidelity summary of a
system at a given simplicity, algorithms for determining network community structure are usually motivated by various
definitions of normalized min-cuts [27, 28, 29, 30]. Our results, particularly for the synthetic graphs with prescribed
modular structure, demonstrate that information modularity implies edge modularity, an unexpected finding which
motivates further numerical and analytic investigations in progress regarding this relationship.
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“Model selection and validaton”



Literature on validation of network models

• is rather limited

Four papers:

• M. Middendorf, E. Ziv, and C. H. Wiggins, “Inferring network mechanisms:
The Drosophila melanogaster protein interaction network”, PNAS 102 (9),
2005. (About 59 citations.)

• D. Alderson, L. Li, W. Willinger, and J. C. Doyle, “Understanding Internet
Topology: Principles, Models, and Validation”, IEEE/ACM Trans. on
Networking, 13 (6), 2005. (About 38 citations.)

• V. Filkov, Z.M. Saul, S. Roy, R.M. DSouza, P.T. Devanbu, “Modeling and
verifying a broad array of network properties”, Europhys. Lett. 86, 2009.

• J. Wang and G. Provan, “Generating Application-Specific Benchmark
Models for Complex Systems”, Proc. Twenty-Third AAAI Conf on Artificial
Intelligence, 2008.



Model validation: Overarching issues

• Many models give rise to same large-scale statistics
(e.g., degree distribution, diameter, clustering coefficient).

• Data sets have multiple attributes. Fitting one or two of them is
not always sufficient.

• Data: Limited availability (expense or proprietary nature);
small data sets



In the beginning – Power Laws

• 1999 - 2005, explosion of observations of “power laws” in networks
(also of “small-worlds”).
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• M. Mitzenmacher, “The Future of Power Law Research”
Internet Mathematics, 2 (4), 2006. (Editorial piece)
– A call to move beyond observation and model building to validation and control.
– Power laws ‘the signature of human activity’

• Clauset, Shalizi, Newman, “Power-law distributions in empirical data”,
to appear SIAM Review. (http://arxiv.org/abs/0706.1062)
– Techniques to detect if actually have a power law, and if so, to extract exponents.



“Inferring network mechanisms: The Drosophila
melanogaster protein interaction network”

Middendorf, Ziv, and Wiggins PNAS 102, 2005

• Study the Drosophila protein interaction network

• Use machine learning techniques (discriminative classification)
to compare with seven proposed models to determine which
model best describes data.

• Classification rather than statistical tests on specific attributes.



Data:
Giot et al, Science 302, 1727 (2003)

• Accept any edge with p > 0.65,
3,359 vertices and 2,795 edges.



7 candidate models

• DMC – duplication-complementation-mutation (Vasquez et al)

• DMR – duplication-mutation with random mutations

• RDS – random static (Erdos-Renyi)

• RDG – random growing graph (Callaway et al.)

• LPA – Linear pref attachment (Barabasi-Albert)

• AGV – Aging vertices

• SMW – Small world (Watts-Strogatz)



The procedure

• Generate 1000 random instances of a network with N=3359
and E=2795 for each of the seven models (7000 random
instances in total). (Training data)

• “Subgraph census” – classify each network by exhaustive
search for all possible subgraphs up to a given size. (“Motifs”)

• Classify each of the 7 mechanisms by raw subgraph counts.

An example of an ADT is shown in Fig. 2. A given network’s
subgraph counts determine paths in the ADT dictated by
inequalities specified by the decision nodes (rectangles) (sub-
graphs associated with Fig. 2 are shown in Fig. 3). For each class,

the ADT outputs a real-valued prediction score, which is the sum
of all weights over all paths. The class with the highest score wins.
The prediction score y(c) for class c is related to the probability
p(c) for the tested network to be in class c by p(c) ! e2y(c)!(1 "
e2y(c)) (42). (The supporting information gives additional details
on the exact learning algorithm. Source code is available from
C.H.W. on request.)

An advantage of ADTs is that they do not assume a specific
geometry of the input space; that is, features are not coordinates
in a metric space (as in support vector machines or k-nearest-
neighbors classifiers), and the classification is thus independent
of normalization. The algorithm assumes neither independence
nor dependence among subgraph counts. The subgraphs reveal
their importance themselves solely by their abilities to discrim-
inate among different classes.

Results
We perform cross-validation (ref. 13 and supporting informa-
tion) with multiclass ADTs, thus determining an empirical
estimate of the generalization error, i.e., the probability of
mislabeling an unseen test datum. Table 1 relates truth and
prediction for the test sets. Five of seven classes have nearly
perfect prediction accuracy. Because AGV is constructed to be
an interpolation between LPA and a ring lattice, the AGV, LPA,
and SMW mechanisms are equivalent in specific parameter
regimes and correspondingly show a nonnegligible overlap.
Nevertheless, the overall prediction accuracy on the test sets still
lies between 94.6% and 95.8% for different choices of p* and

Fig. 2. ADT: The first few nodes of one of the trained ADTs are shown. At each boosting iteration one new decision node (rectangle) with its two prediction
nodes (ovals) is introduced. Every test network follows multiple paths in the tree, dictated by the inequalities in the decision nodes (S# refers to a specific subgraph
count; see Fig. 3). The final score is the sum of all prediction scores over all paths, and the class with the highest prediction score wins.

Fig. 3. Subgraphs associated with Figs. 2 and 4. Shown is the subset of 51
subgraphs (of 148) that appear in the learned ADT.

3194 " www.pnas.org!cgi!doi!10.1073!pnas.0409515102 Middendorf et al.

(Example subgraphs)



Notes on procedure

• Similar to techniques in social sciences (p∗, exponential
random graph models).

• Network “motifs”, Milo et al Science, 2002. But motifs only up
to n = 3 or n = 4 nodes.

• Note the term “clustering” here refers to machine learning
technique to categorize data, not “clustering coefficient”
(transitivity).



Build classifier from the training data (Learning Algorithm)

• Alternating Decision Tree (ADT), (Freund and Schapire, 1997).

An example of an ADT is shown in Fig. 2. A given network’s
subgraph counts determine paths in the ADT dictated by
inequalities specified by the decision nodes (rectangles) (sub-
graphs associated with Fig. 2 are shown in Fig. 3). For each class,

the ADT outputs a real-valued prediction score, which is the sum
of all weights over all paths. The class with the highest score wins.
The prediction score y(c) for class c is related to the probability
p(c) for the tested network to be in class c by p(c) ! e2y(c)!(1 "
e2y(c)) (42). (The supporting information gives additional details
on the exact learning algorithm. Source code is available from
C.H.W. on request.)

An advantage of ADTs is that they do not assume a specific
geometry of the input space; that is, features are not coordinates
in a metric space (as in support vector machines or k-nearest-
neighbors classifiers), and the classification is thus independent
of normalization. The algorithm assumes neither independence
nor dependence among subgraph counts. The subgraphs reveal
their importance themselves solely by their abilities to discrim-
inate among different classes.

Results
We perform cross-validation (ref. 13 and supporting informa-
tion) with multiclass ADTs, thus determining an empirical
estimate of the generalization error, i.e., the probability of
mislabeling an unseen test datum. Table 1 relates truth and
prediction for the test sets. Five of seven classes have nearly
perfect prediction accuracy. Because AGV is constructed to be
an interpolation between LPA and a ring lattice, the AGV, LPA,
and SMW mechanisms are equivalent in specific parameter
regimes and correspondingly show a nonnegligible overlap.
Nevertheless, the overall prediction accuracy on the test sets still
lies between 94.6% and 95.8% for different choices of p* and

Fig. 2. ADT: The first few nodes of one of the trained ADTs are shown. At each boosting iteration one new decision node (rectangle) with its two prediction
nodes (ovals) is introduced. Every test network follows multiple paths in the tree, dictated by the inequalities in the decision nodes (S# refers to a specific subgraph
count; see Fig. 3). The final score is the sum of all prediction scores over all paths, and the class with the highest prediction score wins.

Fig. 3. Subgraphs associated with Figs. 2 and 4. Shown is the subset of 51
subgraphs (of 148) that appear in the learned ADT.

3194 " www.pnas.org!cgi!doi!10.1073!pnas.0409515102 Middendorf et al.

Which subgraphs best

distinguish the models?



Validating classifier

• Slight overlap in models which are variations on one-another.



Validating classifier

• (a) DMC and RDG produce similar statistical distributions.

• (b) Classifier can discriminate between the two models.



After classifier built, use it to characterize individual
network realizations

(Walk the Drosophila data through the ADT)

• A given network’s subgraph counts determine paths in the ADT
(decision nodes are rectangles)

• The ADT outputs a real-valued prediction score, which is the
sum of all weights over all paths.

• The final weight for a model is related to probability that
particular network realization was generated by that model.

• Model with the highest weight wins (best describes that
particular network realization).

• DMC wins for Giot Drosophila data!



Comparison by subgraph counts

• Green is best (same median occurrence as in real Drosophila
data).

• 0 means the subgraph is in data, but not in model.



Introducing noise

• Classifier robust.

• Also robust to p = 0.5 and different subgraph counts, n = 7, 8.



Comments

• Model selection not validation. (Relative judgement)
(i.e., which of these 7 models fits the data best?)

• Many of these 7 models considered produce similar
macroscopic features (degree distribution, clustering, diameter,
etc).

• Delve into microscopic details and let the data distinguish
between the 7 models.

• Must start with models that are accurate statistical fits to data!
(different type of model validation). (Acompanying commentary,
Rice et al PNAS 2005, DMC does not reproduce giant
component.)



“Understanding Internet Topology:
Principles, Models, and Validation”

D. Alderson, L. Li, W. Willinger, and J. C. Doyle, IEEE/ACM Trans. on
Networking, 13 (6), 2005.

• I chose this paper since they explicitly claim to deal with
validation.

• Do you think they did?



Overview

• “First principles” approach to router-level Internet modeling.

• Consider capability of real routers (annotated graph).

• Consider core versus edge requirements.

• From this design “optimal” networks.

• Compare with sampled topologies of actual internet, and show
that constraint-capacity performance curve of real routers fit
with their hypothesis.



Motivation – Need accurate models of the internet

• Testing and evaluating protocols

• Protecting against and detecting attacks

• Improved designs and resource provisioning

→ need annotated graphs, with bandwidth capacity explicit (also
router buffer capacity).

• Given topology generated from a model, which statistical
properties to test?

• Ascribing meaning to model details. (Why would a random
construction relate to an engineered network?)



Router level connectivity

• Layer 2 (data-link layer) connectivity

Open Systems Interconnection (OSI) Reference Model
7 Application Layer
6 Presentation Layer
5 Session Layer
4 Transport Layer
3 Network Layer
2 Data Link Layer
1 Physical Layer



Past work – structural topology generators

• Random connectivity (e.g., Waxman model)

• Transit-stub models of Zegura (Georgia Tech Internetwork
Topology Models)

• But this miss the broad-scale (power-law-like) distributions in
connectivity presumed to be in real Internet.

• So people jumped on the “preferential attachment” bandwagon.



Degree distribution – not the whole story

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.



“First principles” – start with constraints on routers

Cisco router w 15 slots

• Set number of interface cards. Initially with each new card added, increase
overall bandwidth.

• Once number of connections exceeds interface cards, connections have to
share limited bandwidth. (Increase connectivity and decrease maximum
bandwidth available to each link.)

• Overhead in switching causes decrease in total bandwidth.



“Core” versus “edge”

• Core routers – support highest link speed with limited connectivity (long-
haul connectivity)

• Edge routers (access routers) – support wide range of low-speed
connections (this traffic then aggregated and sent on to core) also wide
range of technologies (dial-up, DSL, cable, etc) with wide range of pricing
strategies.



“Heuristically Optimal Topologies”

• Core routers – high bandwidth, low connectivity

• Edge routers – Many low bandwidth connections, aggregating
traffic as close to edge as possible.

(d) HOT net (selectively rewired PA net), (e) HOT net started from core
observed in real-world provider (Abilene), replacing non-Abilene nodes.



Metrics (no clear connection to validation)

• Performance: maximum throughput of graph g, under gravity
model of traffic.

• Likelihood: S(g) = s(g)
smax

, where s(g) =
∑

edgeswiwj.
– degree-degree correlations
– s(g) similar to assortativity/dissortativity in ways. High s(g) means hubs
connected together and will form core.



Empirical data, I

• Abilene network (Internet backbone for higher education use,
carries 1% of traffic in North America).

• CENIC (California education network)



“Validation”

(a) (b)

• (a) Qualitative agreement with HOT derived network

• (b) Observed routers sort of seem to segregate into core/edge
of their first principles.



Empirical data, II

(a) (b)

• (a) Anonymized ISP, (b) Rocketfuel sampled.

• “the point here is that even a heuristic process informed by a detailed understanding

of router role and technology constraints can go a long way toward generating realistic

annotated router-level maps. While not conclusive, what is remarkable about these results

is that the simple assumptions for (fixed) link bandwidths in Table I result in bandwidth-

degree combinations that are not inconsistent with our understanding of heuristically

optimal network design.”



Further points

• High variability could be due exclusively to edge. Variability
in link technologies (DSL, dial-up, cable) and user demands
(pricing).

• High variability may be due to errors in sampling approaches
(e.g., traceroute)

• “Achilles’ Heel”
– hubs in core make networks vulnerable to targeted attack.
– hubs in periphery have little impact on connectivity.
– HOT networks more robust, even “damaged” HOT net better
than intact PA network.



Comments

• Lacks objectivity (heavy self-citation)

• Matching the constraint-capacity performance curve does not
validate that their first principles approach produces a true
topology.

• Specific to internet topology (which is their point) / first
principles.

• See also: W. Willinger, D. Alderson, and J.C. Doyle. “Mathematics and
the Internet: A source of enormous confusion and great potential”, Notices
of the American Mathematical Society, 56(5):286-299, May 2009.



“Modeling and verifying a broad array of network
properties”

V. Filkov, Z.M. Saul, S. Roy, R.M. DSouza, P.T. Devanbu, EPL 86, 2009.

• Graphlet arrival model

Select parent node proportional to degree (PA).
With probability (1− α) connect at midpoint, with probability α at end.



Tunable degree distribution and assortativity

• Degree distribution, power law p(d) ∼ d−γ, with γ = (6− α)/(2− α).

• Assortativity (Pearson’s correlation coefficient for degree-degree of edges),
calculated numerically from recurrence relation.



Allow each incoming “V” to make multiple connections

(Original model only generates trees)

With probability β create l edges (multiple attachment points),
chosen at random.



Comparing across multiple attributes simultaneously

• Real data – 113 networks from software call graphs, social
networks, protein-protein networks, gene networks.

• Select a set of attributes (15 initially)

• Compare pair-wise correlations (heatmap):

Red is correlated, blue is anti-correlated, white neutral.
How effectively do they span a space of independent attributes?

(We retain 11 of the 15)



Comparing models to real-data

• Generate 60,500 sample graphlet model networks for a range of α, β, l and
n.

• Generate 500 sample PA networks for a range of l.

• Visualize attribute space, including real networks and model networks,
using dimension-reduction technique of Principal Component Analysis
(PCA).

• PCA finds projection of n-dimensional data set onto a space of the same
dimension, but where the new axis (principle components) are orthogonal
and linear combinations of the original attributes.

• The PC1 axes is the one that demonstrates maximal variance of the original
data set, PC2 the second largest variance, etc.



Results of PCA

• PCA1∼ number of edges, mean and skew of geodesic, mean and std dev
of clustering and mean and std dev of degree.

• PCA2 is std dev and mean of geodesic, and assortativity.

• For reference grey arrow is assortativity.



Model Validation Lit Review: Conclusions

• New techniques being introduced (classifiers, PCA).

• Calls for necessity of validation (e.g., Mitzenmacher)

• Specifics may matter, constraint curves “first principles”.

• Selection easier than validation!


