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“Model selection and validaton”



Literature on validation of network models

is rather limited

Four papers:

M. Middendorf, E. Ziv, and C. H. Wiggins, “Inferring network mechanisms:
The Drosophila melanogaster protein interaction network”, PNAS 102 (9),
2005. (About 59 citations.)

D. Alderson, L. Li, W. Willinger, and J. C. Doyle, “Understanding Internet
Topology: Principles, Models, and Validation”, IEEE/ACM Trans. on
Networking, 13 (6), 2005. (About 38 citations.)

V. Filkov, Z.M. Saul, S. Roy, R.M. DSouza, P.T. Devanbu, “Modeling and
verifying a broad array of network properties”, Europhys. Lett. 86, 2009.

J. Wang and G. Provan, “Generating Application-Specific Benchmark
Models for Complex Systems”, Proc. Twenty-Third AAAI Conf on Artificial
Intelligence, 2008.



Model validation: Overarching issues

e Many models give rise to same large-scale statistics
(e.g., degree distribution, diameter, clustering coefficient).

e Data sets have multiple attributes. Fitting one or two of them is
not always sufficient.

e Data: Limited availability (expense or proprietary nature);
small data sets



In the beginning — Power Laws

e 1999 - 2005, explosion of observations of “power laws” in networks
(also of “small-worlds”).
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e M. Mitzenmacher, “The Future of Power Law Research”
Internet Mathematics, 2 (4), 2006. (Editorial piece)
— A call to move beyond observation and model building to validation and control.
— Power laws ‘the signature of human activity’

e Clauset, Shalizi, Newman, “Power-law distributions in empirical data”,
to appear SIAM Review. (http://arxiv.org/abs/0706.1062)

— Techniques to detect if actually have a power law, and if so, to extract exponents.



“Inferring network mechanisms: The Drosophila
melanogaster protein interaction network™

Middendorf, Ziv, and Wiggins PNAS 102, 2005

e Study the Drosophila protein interaction network

e Use machine learning techniques (discriminative classification)
to compare with seven proposed models to determine which
model best describes data.

e Classification rather than statistical tests on specific attributes.



Data:
Giot et al, Science 302, 1727 (2003)
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e Accept any edge with p > 0.65,
3,359 vertices and 2,795 edges.



7 candidate models

e DMC — duplication-complementation-mutation (Vasquez et al)
e DMR — duplication-mutation with random mutations

e RDS — random static (Erdos-Renyi)

e RDG — random growing graph (Callaway et al.)

e LPA — Linear pref attachment (Barabasi-Albert)

e AGV — Aging vertices

e SMW — Small world (Watts-Strogatz)



The procedure

e Generate 1000 random instances of a network with N=3359
and E=2795 for each of the seven models (7000 random
instances in total). (Training data)

e “Subgraph census” — classify each network by exhaustive
search for all possible subgraphs up to a given size. (“Motifs”)

e Classify eac
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Notes on procedure

e Similar to techniques in social sciences (p*, exponential
random graph models).

e Network “motifs”, Milo et al Science, 2002. But motifs only up
ton =3 or n = 4 nodes.

e Note the term “clustering” here refers to machine learning
technique to categorize data, not “clustering coefficient”
(transitivity).



Build classifier from the training data (Learning Algorithm)

e Alternating Decision Tree (ADT), (Freund and Schapire, 1997).
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Validating classifier

Prediction
Truth DMR DMC AGY LPA SMW RDS RDG
DMR 99.3 0.0 0.0 0.0 0.0 0.1 0.6
DMC 0.0 99.7 0.0 0.0 0.3 0.0 0.0
AGY 0.0 0.1 84.7 135 1.2 0.5 0.0
LPA 0.0 0.0 10.3 89.6 0.0 0.0 0.1
SMW 0.0 0.0 0.6 0.0 99.0 0.4 0.0
RDS 0.0 0.0 0.2 0.0 0.8 99.0 0.0
RDG 0.9 0.0 0.0 0.1 0.0 0.0 99.0

e Slight overlap in models which are variations on one-another.
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e (a) DMC and RDG produce similar statistical distributions.

e (b) Classifier can discriminate between the two models.
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After classifier built, use it to characterize individual
network realizations

(Walk the Drosophila data through the ADT)

e A given network’s subgraph counts determine paths inthe ADT
(decision nodes are rectangles)

e The ADT outputs a real-valued prediction score, which is the
sum of all weights over all paths.

e The final weight for a model is related to probability that
particular network realization was generated by that model.

e Model with the highest weight wins (best describes that
particular network realization).

e DMC wins for Giot Drosophila data!



Comparison by subgraph counts
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e Green is best (same median occurrence as in real Drosophila
data).

e 0 means the subgraph is in data, but not in model.



Introducing noise
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e Classifier robust.

e Also robust to p = 0.5 and different subgraph counts, n = 7, 8.



Comments

e Model selection not validation. (Relative judgement)
(i.e., which of these 7 models fits the data best?)

e Many of these 7 models considered produce similar
macroscopic features (degree distribution, clustering, diameter,
etc).

e Delve into microscopic details and let the data distinguish
between the 7 models.

e Must start with models that are accurate statistical fits to data!
(different type of model validation). (Acompanying commentary,
Rice et al PNAS 2005, DMC does not reproduce giant
component.)



“Understanding Internet Topology:
Principles, Models, and Validation™

D. Alderson, L. Li, W. Willinger, and J. C. Doyle, IEEE/ACM Trans. on
Networking, 13 (6), 2005.

e | chose this paper since they explicitly claim to deal with
validation.

e Do you think they did?



Overview

e “First principles” approach to router-level Internet modeling.
e Consider capability of real routers (annotated graph).

e Consider core versus edge requirements.

e From this design “optimal” networks.

e Compare with sampled topologies of actual internet, and show
that constraint-capacity performance curve of real routers fit
with their hypothesis.



Motivation — Need accurate models of the internet

e [esting and evaluating protocols
e Protecting against and detecting attacks

e Improved designs and resource provisioning

— need annotated graphs, with bandwidth capacity explicit (also
router buffer capacity).

e Given topology generated from a model, which statistical
properties to test?

e Ascribing meaning to model details. (Why would a random
construction relate to an engineered network?)



Router level connectivity

e Layer 2 (data-link layer) connectivity

Open Systems Interconnection (OSI) Reference Model
7/ Application Layer

6 Presentation Layer

5 Session Layer

4 Transport Layer

3 Network Layer

2 Data Link Layer

1 Physical Layer




Past work — structural topology generators

e Random connectivity (e.g., Waxman model)

e Transit-stub models of Zegura (Georgia Tech Internetwork
Topology Models)

e But this miss the broad-scale (power-law-like) distributions in
connectivity presumed to be in real Internet.

e S0 people jumped on the “preferential attachment” bandwagon.



Degree distribution — not the whole story

Link Speed Router Speed
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“First principles” — start with constraints on routers
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e Set number of interface cards. Initially with each new card added, increase
overall bandwidth.

e Once number of connections exceeds interface cards, connections have to
share limited bandwidth. (Increase connectivity and decrease maximum
bandwidth available to each link.)

e Overhead in switching causes decrease in total bandwidth.



“Core” versus “edge”

e Core routers — support highest link speed with limited connectivity (long-
haul connectivity)

e Edge routers (access routers) — support wide range of low-speed
connections (this traffic then aggregated and sent on to core) also wide
range of technologies (dial-up, DSL, cable, etc) with wide range of pricing
strategies.
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“Heuristically Optimal Topologies”

e Core routers — high bandwidth, low connectivity

e Edge routers — Many low bandwidth connections, aggregating
traffic as close to edge as possible.

(d) HOT net (selectively rewired PA net), (e) HOT net started from core
observed in real-world provider (Abilene), replacing non-Abilene nodes.



Metrics (no clear connection to validation)

e Performance: maximum throughput of graph ¢, under gravity
model of traffic.

o Likelihood: S(g) = 22, where s(g) = 3" ques witd;.
— degree-degree correlations
— s(g) similar to assortativity/dissortativity in ways. High s(g) means hubs

connected together and will form core.
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Empirical data, |

e Abilene network (Internet backbone for higher education use,
carries 1% of traffic in North America).

e CENIC (California education network)



“Validation™
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Qualitative agreement with HOT derived network

Observed routers sort of seem to segregate into core/edge



Empirical data, Il
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e (a) Anonymized ISP, (b) Rocketfuel sampled.

® “the point here is that even a heuristic process informed by a detailed understanding
of router role and technology constraints can go a long way toward generating realistic
annotated router-level maps. While not conclusive, what is remarkable about these results
is that the simple assumptions for (fixed) link bandwidths in Table | result in bandwidth-

degree combinations that are not inconsistent with our understanding of heuristically

optimal network design.”



Further points

e High variability could be due exclusively to edge. Variability
in link technologies (DSL, dial-up, cable) and user demands

(pricing).

e High variability may be due to errors in sampling approaches
(e.g., traceroute)

e “Achilles’ Heel”
— hubs in core make networks vulnerable to targeted attack.
— hubs in periphery have little impact on connectivity.
— HOT networks more robust, even “damaged” HOT net better
than intact PA network.




Comments

e Lacks objectivity (heavy self-citation)

e Matching the constraint-capacity performance curve does not
validate that their first principles approach produces a true

topology.

e Specific to internet topology (which is their point) / first
principles.

e See also: W. Willinger, D. Alderson, and J.C. Doyle. “Mathematics and
the Internet: A source of enormous confusion and great potential”, Notices
of the American Mathematical Society, 56(5):286-299, May 2009.



“Modeling and verifying a broad array of network
properties”™
V. Filkov, Z.M. Saul, S. Roy, R.M. DSouza, P.T. Devanbu, EPL 86, 20009.

e Graphlet arrival model
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Select parent node proportional to degree (PA).
With probability (1 — «) connect at midpoint, with probability « at end.



Tunable degree distribution and assortativity
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e Degree distribution, power law p(d) ~ d~7, withy = (6 — a) /(2 — ).

e Assortativity (Pearson’s correlation coefficient for degree-degree of edges),
calculated numerically from recurrence relation.



Allow each incoming “V” to make multiple connections

(Original model only generates trees)

Q B O O "
LT O
- -
O L g

With probability 5 create [ edges (multiple attachment points),
chosen at random.



Comparing across multiple attributes simultaneously

e Real data — 113 networks from software call graphs, social
networks, protein-protein networks, gene networks.

e Select a set of attributes (15 initially)

e Compare pair-wise correlations (heatmap):

mean_betweenness
std dev betweenness
skew_betweenness
mean_clust

std dev clust
skew_clust
skew_geodesic
mean_degree
skew degree
std_dev_degree
num_nodes
num_edges
assortativity
mean_gecdesic
std_dev_geodesic

Red is correlated, blue is anti-correlated, white neutral.

How effectively do they span a space of independent attributes?
(We retain 11 of the 15)



Comparing models to real-data

Generate 60,500 sample graphlet model networks for a range of «, 3,1 and
n.

Generate 500 sample PA networks for a range of [.

Visualize attribute space, including real networks and model networks,
using dimension-reduction technique of Principal Component Analysis
(PCA).

PCA finds projection of n-dimensional data set onto a space of the same
dimension, but where the new axis (principle components) are orthogonal
and linear combinations of the original attributes.

The PC1 axes is the one that demonstrates maximal variance of the original
data set, PC2 the second largest variance, etc.



Results of PCA
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e PCA1~ number of edges, mean and skew of geodesic, mean and std dev
of clustering and mean and std dev of degree.

e PCAZ2 is std dev and mean of geodesic, and assortativity.

e For reference grey arrow is assortativity.



Model Validation Lit Review: Conclusions

e New techniques being introduced (classifiers, PCA).
e Calls for necessity of validation (e.g., Mitzenmacher)
e Specifics may matter, constraint curves “first principles”.

e Selection easier than validation!



