Urbanization and Economies of Scale: Topics in Network Theory

Nicholas J. Linesch

Institute of Transportation Studies University of California, Davis

May 12, 2009

Outline of Part I

1 Context for transportation networks

- Motivation
- Terms and Definitions

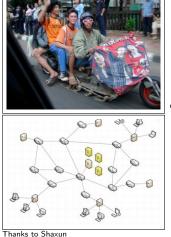
Outline of Part II

2 Urban Systems

- The Modern City
- Using software to simulate urbanization

Part I

Context Setting


Nicholas J. Linesch Urbanization and Economies of Scale: Topics in Network Theory

Motivation Terms and Definitions

• Goods

Flow

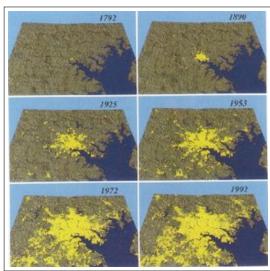
- People
- Information

Children in Jakarta

æ

<ロ> <同> <同> < 同> < 同>

Motivation Terms and Definitions



・ロン ・雪 と ・ ヨ と ・ ヨ と

æ

Motivation Terms and Definitions

Baltimore simulated forest land cover showing 200 years of urban growth in yellow. biology.usgs.gov

2

Motivation Terms and Definitions

Sustainability

- How do these modes interact?
- What other systems are impacted by movement and flow?
- How are land use and transportation plans sensitive to one another?

Motivation Terms and Definitions

Network Properties

Defining a network

A set of nodes or vertices joined together in pairs by lines or edges

Spatial Distribution Network Design Problem

Given a set of things that 'want' to move between a set of spatial points V, what's the cheapest way to get them there?

Gastner & Newman (2006) wants us to think about two specific parts of this question as applied to transportation networks:

- How do we determine the points V anyway?
- What do we mean by 'cheapest'? Does how we measure cost change the optimal structure?

(Wuellner on spacial distribution networks, 2009)

・ 同 ト ・ ヨ ト ・ ヨ ト

Network Properties

Cost

- Cost = $\sum_{edges(i,j)} d_{ij}$ where d_{ij} is the Euclidean distance between nodes i and j.
- Cost can be measured in travel time and can be influenced by traffic
- Let w_{ij} be the amount of traffic between i and j:
- Total Travel Cost can be calculated as $\mathsf{Z} = \sum w_{ij} d_{ij}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Network Properties

Distance

- Euclidean distance
- Legs of air travel
- Hops an Internet packet will make

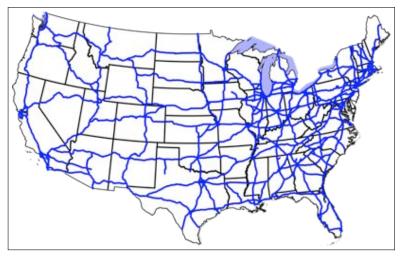
Diameter

Largest graph distance between two points

A B M A B M

Network Properties

Vertex Degrees

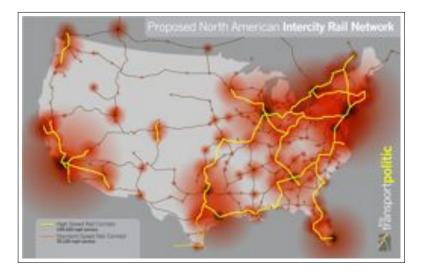

The degree of a vertex is the number of edges connected to it

\rightarrow A distinguishing characteristic of a network

∃→ < ∃→</p>

Motivation Terms and Definitions

Interstate System


wikimedia.org

<ロ> <同> <同> < 同> < 同>

æ

Motivation Terms and Definitions

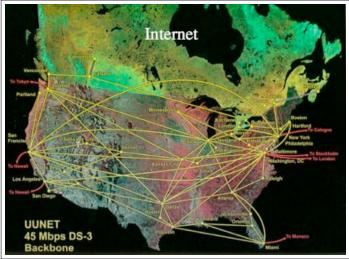
Interstate Rail System

ヘロン 人間 とくほど 人 ほとう

æ

Motivation Terms and Definitions

Air Network



Gaster Slides from MAE 298, 2008

<ロ> <同> <同> < 同> < 同>

Motivation Terms and Definitions

Information network: Internet



Gaster Slides from MAE 298, 2008

GOTO: http://www.akamai.com Content Delivery Networks

Motivation Terms and Definitions

Counting Network Edges

Histograms of the lengths of edges in three networks (Gastner & Newman, 2006) Small worlds formed in airlines.

Motivation Terms and Definitions

Zipf's Law: 1949

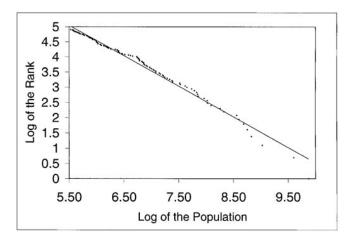


Figure: Log Size versus Log Rank of the 135 largest U. S. Metropolitan Areas in 1991 Source: Statistical Abstract of the United States [1993]

Part II

Urban Systems Analysis

Nicholas J. Linesch Urbanization and Economies of Scale: Topics in Network Theory

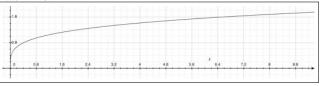
2 Urban Systems

- The Modern City
- Using software to simulate urbanization

Scaling and Biological Metaphors

Organisms as metabolic engines

Characterized by energy consumption rates, growth rates, body size, and behavioral times


Cities as organisms

Scaling and Biological Metaphors

- A metabolic engine is a consumer of resources
- Consider biological scaling
- Almost all physiological elements scale with body mass = M

Scaling and Biological Metaphors: Generalized Case

- Consider M as a body mass
- M has a metabolic rate, B
- B is the energy required to sustain the organism
- $B \propto M^{3\over 4}$, typically the exponent is a multiple of 1/4 (or 1/(1+d) in d-dimensional space

 $y = x^{3/4}$

• The metabolic rate per unit mass: $\frac{B}{M} \propto M^{\frac{-1}{4}}$

Scaling and Biological Metaphors: Examples

- $M^{1-\beta} \approx M^{1/4}$ can be used to scale physiological times (life spans, turnover time, etc.)
- $M^{1-\beta} \approx M^{-1/4}$ can be use to scale associated rates (heart rate, population growth)

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Scaling and Biological Metaphors: Examples

- $M^{1-\beta} \approx M^{1/4}$ can be used to scale physiological times (life spans, turnover time, etc.)
- $M^{1-\beta} \approx M^{-1/4}$ can be use to scale associated rates (heart rate, population growth)

伺い イヨン イヨン

The Modern City Modeling Procedures

Scaling and Biological Metaphors: Generalizable Items

- Rates
- Times
- Internal structures

Bettencourt equation

Bettencourt et. al (2007) go on further to describe urban growth and decay with a power law function

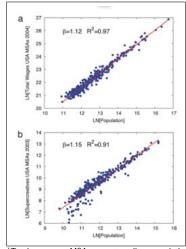
$$Y(t) = Y_0 N(t)^{\beta} \tag{1}$$

Where N is the population,

Y is material resources (such as energy or infrasturcture),

 Y_0 is a normalization constant

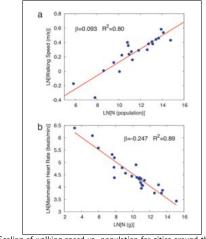
Application to the Modern City


- Data collected to understand scaling of the urban metabolism
- Data is grouped by metropolitan statistical areas (MSAs), and larger urban zones (LUZs)
- The data set is applied to the scaling equation described in the previous slide

A B + A B +

Urban Systems

The Modern City Modeling Procedures


Scaling and Biological Metaphors

a)Total wages per MSA vs. metropolitan population b) Supercreative employment per MSA vs. metropolitan population Urban Systems

The Modern City Modeling Procedures

Scaling and Biological Metaphors

a) Scaling of walking speed vs. population for cities around the world. b) Heart rate vs. the size (mass) of organisms

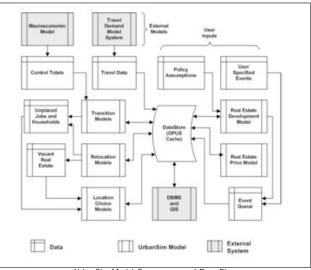
The Modern City Modeling Procedures

Scaling exponents for urban indicators vs. city size

Y	β	95% C	Adj-#*	Observations	Country-year
New patents	1.27	[1.25, 1.29]	0.72	331	U.S. 2001
Inventors	1.25	[1.22, 1.27]	0.76	331	U.S. 2001
Private R&D employment	1.34	[1.29, 1.39]	0.92	266	U.S. 2002
Supercreative' employment	1.15	[1.11,1.18]	0.89	287	U.S. 2003
R&D establishments	1.19	[1.14, 1.22]	0.77	287	U.S. 1997
R&D employment	1.26	[1.18,1.43]	0.93	295	China 2002
Total wages	1.12	[1.09, 1.13]	0.96	365	U.S. 2002
Total bank deposits	1.08	[1.03, 1.11]	0.91	267	U.S. 1996
GDP	1.15	[1.06, 1.23]	0.96	295	China 2002
GDP	1.26	[1.09,1.46]	0.64	195	EU 1999-2003
GDP	1.13	[1.03, 1.23]	0.94	37	Germany 2003
Total electrical consumption	1.07	[1.03, 1.11]	0.88	392	Germany 2002
New AID5 cases	1.23	[1.38, 1.29]	0.76	93	U.S. 2002-2000
Serious crimes	1.16	[1.11, 1.18]	0.89	287	U.S. 2003
Total housing	1.00	[0.99,1.01]	0.99	316	U.S. 1990
Total employment	1.01	[0.99,1.02]	0.98	331	U.S. 2001
Household electrical consumption	1.00	[0.94,1.06]	0.88	377	Germany 2002
Household electrical consumption	1.05	[0.89, 1.22]	0.91	295	China 2002
Household water consumption	1.01	[0.89,1.11]	0.96	295	China 2002
Gasoline stations	0.77	[0.74,0.81]	0.93	318	U.S. 2001
Gasoline sales	0.79	[0.73,0.80]	0.94	318	U.S. 2001
Length of electrical cables	0.87	[0.82,0.92]	0.75	380	Germany 2002
Road surface	0.63	[0.74,0.92]	0.87	29	Germany 2002

Date sources are shown in S/Text. CI, confidence internal; Adj-R², adjusted R²; GDP, gross domestic product.

< 3


Introduction to Land Use Modeling Software

- Software package
- Built by team at University of Washington
- Open source software used for simulating growth of metropolitan regions
- Series of discrete choice models is run to determine the final land use outputs

Urban Systems

The Modern City Modeling Procedures

UrbanSim: Land Use Modeling Package

UrbanSim Model Components and Data Flow

< 🗇 >

э

Key Features of the System

- Simulates key decision makers and choices that impact urban development
- Accounts for land, structures, and occupants
- Urban development simulated as dynamic process over time and space
- Incorporates governmental policy assumptions
- Returns disaggregate information by parcel
- Simulates development and redevelopment

4 3 5 4 3 5

Key Features of Implementation

- Linux, Mac OS, and Windows compatible
- Code predominantly implemented in Python
- Open source and downloadable
- User interface focusses on model configuration, data management, and scenario evaluation
- Object oriented programming
- Results are GIS compatible
- Binary files used for reading and writing, can be converted to shapefile, database, etc.

伺 ト イ ヨ ト イ ヨ ト

The Modern City Modeling Procedures

Discrete Choice Equations

Utility Function

$$U_i = V_i + \epsilon_i$$

 $V_i = \beta x_i$ is a linear-in-parameters function and β is a vector of k estimator coefficients

Probability Function

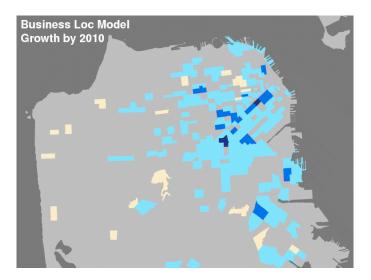
$$P_i = \frac{e^{V_i}}{\sum_j e^{V_j}}$$

j is an index over all possible alternatives

3

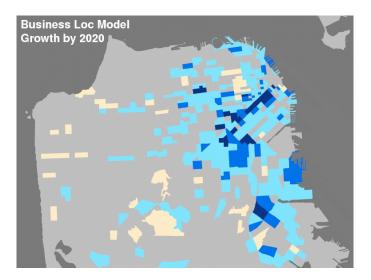
Sub-model routines

- Real estate price model
- Building transition model
- Household transition model creates and removes households and updates the set of persons accordingly. It is based on random sampling and is driven by macroeconomic predictions.
- Business transition model

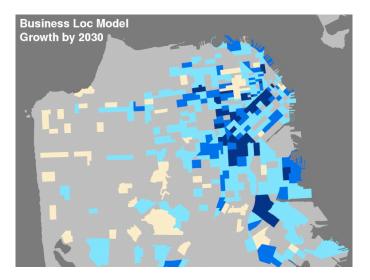

- Household relocation choice model
- Household location choice model

determines households for moving, using a logit model.

- Business relocation model
- Business location choice model


The Modern City Modeling Procedures

Business Growth in San Francisco


The Modern City Modeling Procedures

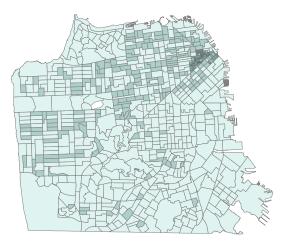
Business Growth in San Francisco

The Modern City Modeling Procedures

Business Growth in San Francisco

Urban Systems The

The Modern City Modeling Procedures

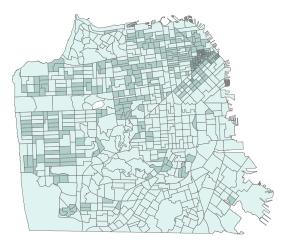

A Quick Video Presentation of UrbanSim

Goto: http://www.youtube.com/watch?v=nmBnRAde5Xw

∃→ < ∃→</p>

The Modern City Modeling Procedures

Population Growth in San Francisco


Figure: Year 2001

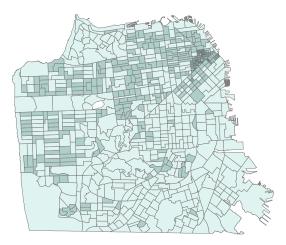
Nicholas J. Linesch Urbanization and Economies of Scale: Topics in Network Theory

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Modern City Modeling Procedures

Population Growth in San Francisco

Figure: Year 2010

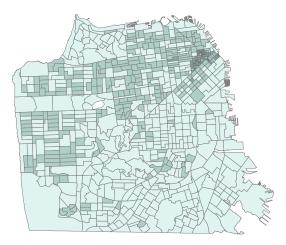

Nicholas J. Linesch Urbanization and Economies of Scale: Topics in Network Theory

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

The Modern City Modeling Procedures

Population Growth in San Francisco

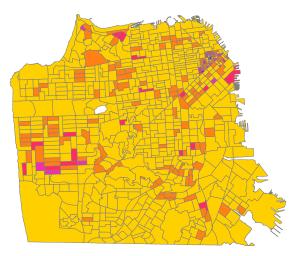

Figure: Year 2020

Nicholas J. Linesch Urbanization and Economies of Scale: Topics in Network Theory

Image: A matrix

The Modern City Modeling Procedures

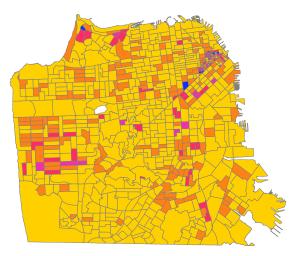
Population Growth in San Francisco


Figure: Year 2030

Nicholas J. Linesch Urbanization and Economies of Scale: Topics in Network Theory

Image: Image:

The Modern City Modeling Procedures


Employment Growth in San Francisco

The Modern City Modeling Procedures

Employment Growth in San Francisco

The Modern City Modeling Procedures

Employment Growth in San Francisco

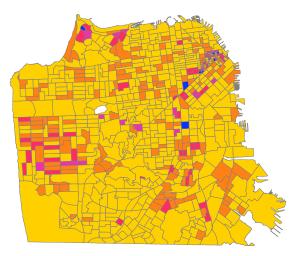


 Figure:
 Year
 2020
 Image: Provide the second sec

The Modern City Modeling Procedures

Employment Growth in San Francisco

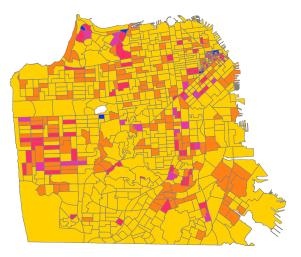
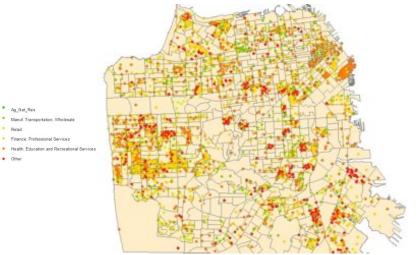
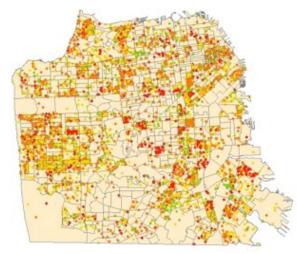



 Figure:
 Year
 2030
 Image: Provide the second sec

The Modern City Modeling Procedures

Jobs by Sector in San Francisco

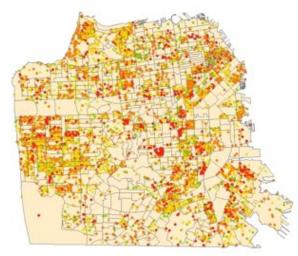


Year 2001

< ロ > < 同 > < 三 > < 三 >

The Modern City Modeling Procedures

Jobs by Sector in San Francisco

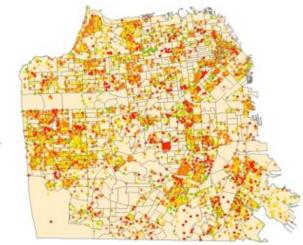


- Ag_Nat_Res
- Manuf Transportation, Wholesale
- Retail
- Finance, Professional Services
- Health, Education and Recreational Services
- Other

イロト イ団ト イヨト イヨト

The Modern City Modeling Procedures

Jobs by Sector in San Francisco


- Ag_Nat_Res
- Manuf. Transportation, Wholesale
- Retail
- Finance, Professional Services
- Health, Education and Recreational Services
- Other

Year 2020

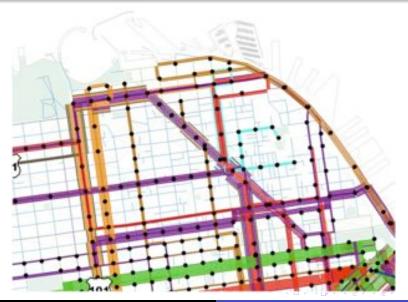
イロト イ団ト イヨト イヨト

The Modern City Modeling Procedures

Jobs by Sector in San Francisco

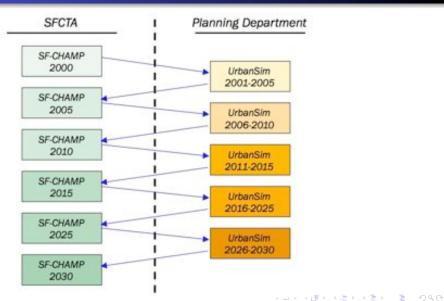
- Ag_Nat_Res
- Manuf. Transportation, Wholesale
- Retail
- Finance, Professional Services
- Health, Education and Recreational Services
- Other

イロト イ団ト イヨト イヨト

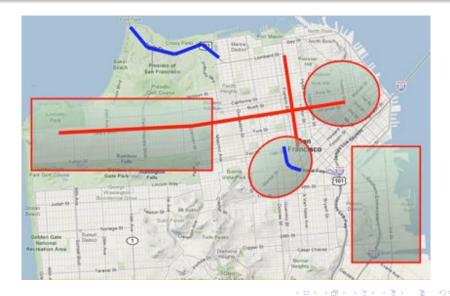

The Modern City Modeling Procedures

Activity Based Modeling Scenario: Auto Networks

The Modern City Modeling Procedures


Activity Based Modeling Scenario: Transit Networks

Nicholas J. Linesch Urbanization and Economies of Scale: Topics in Network Theory


The Modern City Modeling Procedures

What to do with land use forecasts?

The Modern City Modeling Procedures

What to do with land use forecasts?

Nicholas J. Linesch Urbanization and Economies of Scale: Topics in Network Theor

- Land use model validation
- Solidify key links between network theory and urban modeling
- Further quantify the urban metabolism for long term planning
- Generalize for generic metropolitan implementation