
Theoretical Frameworks for Routing

Problems in the Internet

Menglin Liu

5/29/20091

Outline

 Background

 BGP

 Theoretical frameworks

 Path algebra

 Routing algebra

 Stable path problem

 Policy structure and routing structure

 Metarouting

 Routing Algebra Meta-Language (RAML)

5/29/20092

BGP (Border Gateway Protocol)

5/29/20093

 A Network Layer Protocol

 Designed as the core routing protocol of the Internet

AS: Autonomous System

 From Prof Mukherjee’s ECS 152 lecture notes

3b

1d

3a

1c

2a
AS3

AS1

AS2
1a

2c

2b

1b

3c

eBGP session

iBGP session

http://networks.cs.ucdavis.edu/~mukherje/152a-sq09/lectures/Ch4-Network-Layer-4th-ed.pdf

BGP Routing Policy

5/29/20094

 An example:

 X does not want to route from B via X to C

 .. so X will not advertise to B a route to C

From Prof Mukherjee’s ECS 152 lecture notes

A

B

C

W
X

Y

legend:

customer

network:

provider

network

http://networks.cs.ucdavis.edu/~mukherje/152a-sq09/lectures/Ch4-Network-Layer-4th-ed.pdf

BGP Divergence

5/29/20095

 BGP is not a pure distance-vector since the routing

policies can override distance metrics

Distance vector:

 From time-to-time, each node sends its own distance vector
estimate to neighbors

 When a node 𝑥 receives new DV estimate from neighbor, it
updates its own DV using Bellman-Ford equation:

 The routing policies may conflict and cause BGP to

diverge.

𝐷𝑥(𝑦) ← min y {c(𝑥, 𝑦) + 𝐷y(𝑦) } for each node 𝑦 ∊ 𝑵

BGP Divergence: An Example

5/29/20096

D1

D2 D3

D0

r2 r3

r1

r2>r1>r3

r3>r2>r1 r1>r3>r2

Step 0 Step 1 Step 2

D1 r1 D1 r1 D1 r1

D2 r3 D2 r3 D2 r2

D3 r3 D3 r1 D3 r1

Step 3 Step 4

D1 r2 D1 r2

D2 r2 D2 r2

D3 r1 D3 r3

Step 5 Step 6

D1 r2 D1 r1

D2 r3 D2 r3

D3 r3 D3 r3
Example from [VGE00]

Theoretical Framworks

5/29/20097

 How to model the BGP routing problems?

Policy-based Routing

 Path Algebras

 Routing Algebras

 Stable Path Problem

 Policy Structure and Routing Structure

 And how to ensure the existence of a solution (stable
routing)?

 Universal condition

 Instance condition

Path Algebras (Semi-rings)

5/29/20098

 𝑋 : Values that will be associated with routes and edges

 Commutative:

 Associative:

 Identity:

 Selectivity:

 Associativity:

 Identity:

 Annihilator:

Path Algebra (cont.)

5/29/20099

and

 Distributivity:

Path Selection Function

Path Computing Function

Path Algebra Examples

5/29/200910

 𝑃1 : A → B → C → D

 𝑃2 : B → C → D

 𝑃3 : A → D
A

B C

D

1
1

1

4

Path Algebra -- Conditions

5/29/200911

 Universal Conditions

 Super-unitary

: zero weight

: zero weight is best possible – no negative edge

 Nilpotent

: the worst weight

∀𝑎, ∃𝑞, s.t. : loop has no benefits for all the instances

 Instance Condition

 Absorptive

Loop has no benefits for this instance

Routing Algebra

5/29/200912

∑ , 𝑳 𝑿

≲ ⊕

⊗ ⊗

Routing Algebra -- Conditions

5/29/200913

 Universal Condition

 Monotonicity

 Instance Condition I =
 Freeness

For every , and every , there exists

i, such that 𝜎i<𝓛𝐴(𝑣i, 𝑣i+1) ⨂ 𝜎i+1

Go to slide 15

Stable Path Problem

5/29/200914

 No universal condition for SPP

 Every node v maintains a set of permitted paths to

the destination , and a ranking function . If ,

and , then .

 The path assignment is a solution if it is stable at each

node u
 The path assignment π maps each node to a path,

 Stable:

A Dispute Wheel

5/29/200915

 (1) Ri is a path from ui to ui+1

 (2)

 (3)

 (4)

 Which path will ui choose ?

 Qi≤RiQi+1≤RiRi+1Qi+2

≤RiRi+1Ri+2Qi+3≤…

≤RiRi+1…Ri-1Qi ≤…

 No solution!

Stable Path Problem – Instance Condition

5/29/200916

 No dispute wheel

 Revisit instance condition of Routing Algebra

Policy Structure & Routing Structure

5/29/200917

 Policy structure

 𝖃: values that will be associated with routes

 ≼: x≼y means value x is at least as well-preferred as value y

 ⊑: x⊑y means value y can be constructed from value x

 S-Instance

 𝝍 maps paths to elements of 𝖃 such that for
all and all , we have 𝝍(P) ⊑ 𝝍
(QP)

Policy Structure and Routing Structure

5/29/200918

 Routing Structure of an S-Instance

 Attention!

 is the sub-path relation

 is the preference relation

Policy Structure and Routing Structure

5/29/200919

 Then we have :

 (join relation):

 R1 and R2 are over the same set X

 x R z ⇔ There exists such that and

Policy Structure and Routing Structure

5/29/200920

 Instance Condition

 is anti-reflexive

 Anti-reflexive: (R is a relation)

 A bad triangle: an example of dispute wheel

 Universal Condition

 is anti-reflexive

The Rest of Chau’s Paper [CGG06]

5/29/200921

 Associate previous frameworks with policy structure and

routing structure

 Path algebras vs. policy/routing structure

 Routing algebras vs. policy/routing structure

 Stable path problems vs. routing structure

 Discuss the relation between the universal/instance

conditions for all these theoretical frameworks

Routing Algebra Meta-Language (RAML)

5/29/200922

 Objective:

 We can construct more interesting routing protocols

 All protocols constructed should have a solution

 Motivation

 Constructing (complex) routing algebras is difficult and tedious

 Proving monotonicity condition is even worse

 Can we design a meta-language and make thing easier?

RAML (cont’d)

5/29/200923

 Technique

 Design several “natural” operations

 Define some “basic” routing algebras

 Construct complex routing algebras from the basic ones by

using the operations we define

RAML – Basic Algebras

5/29/200924

Algebra Description Properties

ADD(n, m) Natural number addition Strict monotonicity

MULT(n, m) Natural number product Monotonicity

MULTr(n, m) Real number product

MAX(n) Maximum Monotonicity

MIN(n) Minimum

LP(n) Local preference

OP(n) Origin preference Monotonicity

SEQ(n, m) Sequences Strict monotonicity

SIMSEQ(n, m) Simple sequences Strict monotonicity

TAGS(T) Route tags Monotonicity

RAML – Basic Algebras (cont’d)

5/29/200925

 ADD(n, m)

 𝐿 = *n, n+1, … , m+

 𝛴 = *n, n+1, … , m+ ⋃ *𝜑}

 i ⨁ j = 𝜑, if i + j ∉ *n, n+1, … , m+

 i ⨁ j = i + j, otherwise

 Multiplications are defined similarly

ADD(1,5)

⨁ 1 2 3 4 5 𝜑

1 2 3 4 5 𝜑 𝜑

2 3 4 5 𝜑 𝜑 𝜑

3 4 5 𝜑 𝜑 𝜑 𝜑

4 5 𝜑 𝜑 𝜑 𝜑 𝜑

5 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑

RAML – Basic Algebras (cont’d)

5/29/200926

 MAX(n), MIN(n), LP(n)

 𝐿 = *1, 2, …, n+

 𝛴 = *1, 2, …, n+ ⋃ *𝜑}

 OP(n)

 𝐿 = {𝜅}

 𝛴 = *1, 2, …, n+ ⋃ *𝜑}

MAX(3)

⨁ 1 2 3

1 1 2 3

2 2 2 3

3 3 3 3

MIN(3)

⨁ 1 2 3

1 1 1 1

2 1 2 2

3 1 2 3

LP(3)

⨁ 1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

OP(3)

⨁ 1 2 3

𝜅 1 2 3

RAML – Basic Algebras (cont’d)

5/29/200927

 SEQ(n, m)

 𝐿 = *1, 2, … , n+

 𝛴 = {𝜖+ ⋃ 𝐿1 ⋃ 𝐿2 ⋃ … ⋃ 𝐿m ⋃ *𝜑}

(the set of strings over alphabet 𝐿 with length at most m)

 𝑖 ⨁ 𝜎 = 𝜑, if |𝜎| = m; 𝑖 ⨁ 𝜎 = 𝑖 ∷ 𝜎, otherwise

 𝜎1 ≼ 𝜎2 ⇔ |𝜎1| ≤ |𝜎2|

 SIMSEQ(n, m)

 𝐿 = *1, 2, … , n+

 𝛴 = {𝜖+ ⋃ 𝐿1 ⋃ 𝐿2 ⋃ … ⋃ 𝐿m ⋃ *𝜑}

 𝑖 ⨁ 𝜎 = 𝜑, if |𝜎| = m or 𝑖 ∈ 𝜎; 𝑖 ⨁ 𝜎 = 𝑖 ∷ 𝜎, otherwise

 𝜎1 ≼ 𝜎2 ⇔ |𝜎1| ≤ |𝜎2|

RAML – Basic Algebras (cont’d)

5/29/200928

 TAGS(T)

 T : type of objects (Integer, String, etc.)

 𝛴 = 2T (all finite sets of objects of type T)

 𝐿 = {(i, 𝜎) | 𝜎 ∈ 𝛴+ ⋃ *(d, 𝜎) | 𝜎 ∈ 𝛴+ ⋃ *𝜅}

 (i, 𝜎) : insertion of elements

 (d, 𝜎) : deletion of elements

⨁ 𝜎

(i, 𝜎1) 𝜎 ⋃ 𝜎1

(d, 𝜎1) 𝜎 ∕ 𝜎1

𝜅 𝜎

RAML – Lexical Product

5/29/200929

 𝐴 ⨂ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B)

 We want to define binary operation ⨂ for constructing new

routing algebra

𝐴 ⨂ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: multiple routing metrics (BGP, OSPF, etc.)

RAML – Lexical Product (cont’d)

5/29/200930

 Product Construction I

 𝛴 = (𝛴A ∕ *𝜑A}) × (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 (𝜎1A, 𝜎1B) ≼ (𝜎2A, 𝜎2B) ⇔ 𝜎1A ≺A 𝜎2A or 𝜎1A =A 𝜎2A, 𝜎1B ≼B 𝜎2B

 𝐿 = 𝐿A × 𝐿B

 (𝜆A, 𝜆B) ⨁ (𝜎A, 𝜎B) = (𝜆A ⨁A 𝜎A, 𝜆B ⨁B 𝜎B) if 𝜆A ⨁A 𝜎A ≠ 𝜑A

and 𝜆B ⨁B 𝜎B ≠ 𝜑B

 (𝜆A, 𝜆B) ⨁ (𝜎A, 𝜎B) = 𝜑 otherwise

RAML – Scoped Product

5/29/200931

 𝐴 ⨀ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B)

 We want to define binary operation ⨂ for constructing new

routing algebra

𝐴 ⨀ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: communication inside administrative entities vs.

communication between administrative entities

e.g. BGP = EBGP ⨀ IBGP

RAML – Scoped Product (cont’d)

5/29/200932

 Product Construction II

 𝛴 = (𝛴A ∕ *𝜑A}) × (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 (𝜎1A, 𝜎1B) ≼ (𝜎2A, 𝜎2B) ⇔ 𝜎1A ≼A 𝜎2A or 𝜎1A =A 𝜎2A, 𝜎1B ≼B 𝜎2B

 𝐿 = (𝐿A × 𝛴B) ⋃ 𝐿B

 Here we assume w.l.o.g that 𝐿A × 𝛴B ⋂ 𝐿B is empty

 For edges between entities, labels are of the form (𝜆A, 𝜎’B)

 For edges inside entities, labels are of the form 𝜆B

⨁ (𝜎A , 𝜎B)

(𝜆A, 𝜎’B) (𝜆A ⨁A 𝜎A , 𝜎’B)

𝜆B (𝜎A , 𝜆B ⨁B 𝜎B)

RAML – Scoped Product (cont’d)

5/29/200933

Router 1 (𝜎0, 𝛽0)

Router 2
(𝜎0, 𝛽1)=(𝜎0, 𝜆B1 ⨁B 𝛽0)

𝜆1 = 𝜆B1

Router 3
(𝜎1, 𝛽2)=(𝜆A ⨁A 𝜎0, 𝛽2)

𝜆3 = 𝜆B2

𝜆2 = (𝜆A, 𝛽2)

Router 4
(𝜎1, 𝛽3)=(𝜎1, 𝜆B2 ⨁B 𝛽2)

RAML – Disjunction

5/29/200934

 𝐴 ⊲ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B)

 We want to define binary operation ⨂ for constructing new

routing algebra

𝐴 ⊲ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: we want to use both 𝐴 and 𝐵 in the sense that

signatures in 𝛴A have higher preference than signatures in 𝛴B

RAML – Disjunction (cont’d)

5/29/200935

 Implementation

 𝛴 = (𝛴A ∕ *𝜑A+) ⋃ (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 𝜎1 ≼ 𝜎2 ⇔𝜎1, 𝜎2 ∈ 𝛴A, 𝜎1 ≼A 𝜎2 or

𝜎1, 𝜎2 ∈ 𝛴B, 𝜎1 ≼B 𝜎2 or

𝜎1 ∈ 𝛴A , 𝜎2 ∈ 𝛴B

 𝑡 : an injection function from 𝛴A to 𝛴B

 𝐿 = 𝐿A ⋃ 𝐿B ⋃ *𝑖}

⨁ 𝜎A 𝜎B

𝜆A 𝜆A ⨁ 𝜎A 𝜑

𝜆B 𝜑 𝜆B ⨁ 𝜎B

𝑖 𝑡(𝜎A) 𝜑

RAML – Monotonicity Preservation

5/29/200936

𝐴 𝐵 𝐴 ⨂ 𝐵 𝐴 ⨀ 𝐵 𝐴 ⊲ 𝐵

M M M - M

M SM SM - M

SM M SM M M

SM SM SM SM SM

SM * SM - -

RAML – Constructing BGP

5/29/200937

 Constructing an IGP-like protocol

 GN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 RAN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 MAN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 MyIGP = GN ⨀ (RAN ⨀ MAN)

 Constructing the real BGP is more tedious and is omitted

here, see Metarouting paper [GS05] for more details

Open Problems and Discussion

5/29/200938

 Some of the universal/instance condition seems unnatural

 The freeness condition for routing algebras is seemingly

“translated” from dispute wheel in stable path problem

 Can we find natural conditions which might reveal more insight

of the convergence condition?

 Can we design a theoretical framework that allow

security feature?

 Can we design meta-languages for other frameworks?

Thank you!

5/29/200939

 Comments Appreciated!

