Theoretical Frameworks for Routing Problems in the Internet

Menglin Liu

Outline

Background

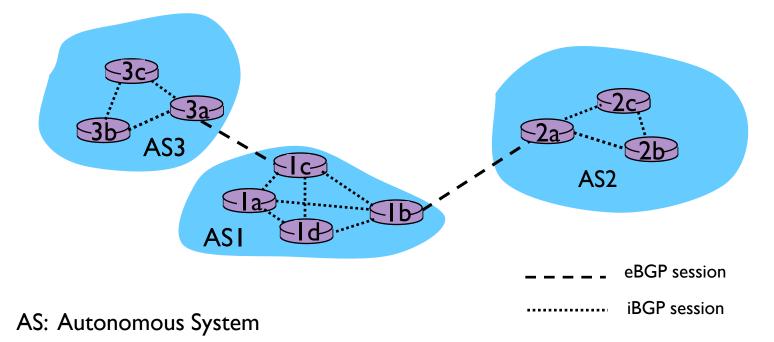
- **BGP**
- Theoretical frameworks
 - Path algebra
 - Routing algebra
 - Stable path problem
 - Policy structure and routing structure

Metarouting

Routing Algebra Meta-Language (RAML)

BGP (Border Gateway Protocol)

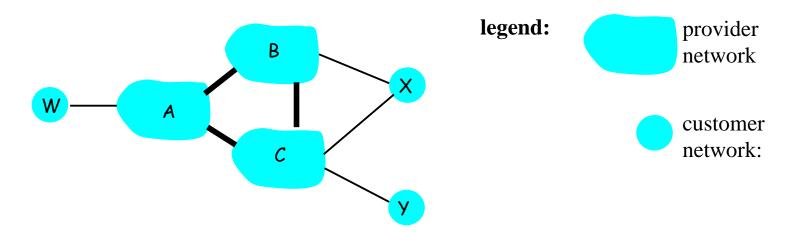
- A Network Layer Protocol
- Designed as the core routing protocol of the Internet



From Prof Mukherjee's ECS 152 lecture notes

BGP Routing Policy

An example:



X does not want to route from B via X to C
.. so X will not advertise to B a route to C

From Prof Mukherjee's ECS 152 lecture notes

BGP Divergence

 BGP is not a pure distance-vector since the routing policies can override distance metrics

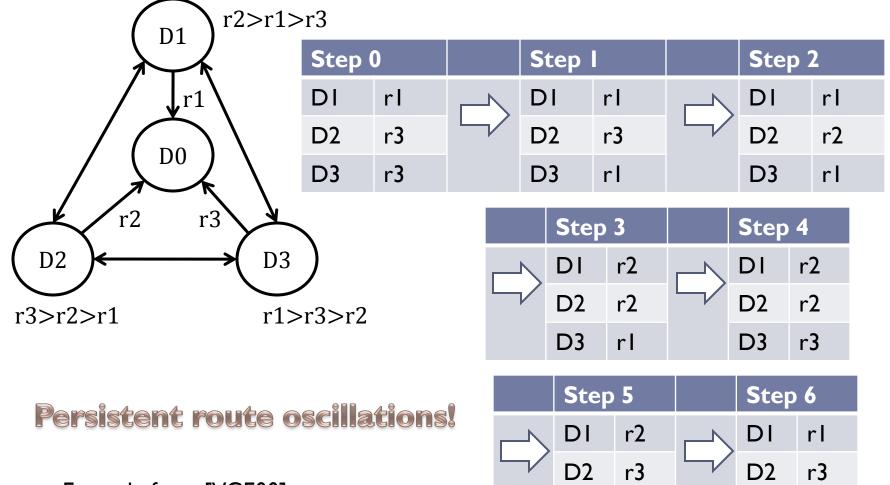
Distance vector:

- From time-to-time, each node sends its own distance vector estimate to neighbors
- When a node x receives new DV estimate from neighbor, it updates its own DV using Bellman-Ford equation:

 $D_x(y) \leftarrow \min_y \{c(x, y) + D_y(y)\}$ for each node $y \in N$

The routing policies may conflict and cause BGP to diverge.

BGP Divergence: An Example



Example from [VGE00]

5/29/2009

D3

r3

D3

r3

Theoretical Framworks

How to model the BGP routing problems? Policy-based Routing

- Path Algebras
- Routing Algebras
- Stable Path Problem
- Policy Structure and Routing Structure
- And how to ensure the existence of a solution (stable routing)?
 - Universal condition
 - Instance condition

Path Algebras (Semi-rings)

 $(X,\oplus,\otimes,ar{0},ar{1})$

- X: Values that will be associated with routes and edges \oplus
- Commutative: $a \oplus b$:
 - $e: a \oplus b = b \oplus a$
- Associative: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$
- Identity: $a \oplus \overline{0} = a$
- Selectivity: $a \oplus b = a \text{ or } b$
- Associativity: $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
- Identity: $\overline{1} \otimes a = a$
- Annihilator: $a \otimes \overline{0} = \overline{0}$

Path Algebra (cont.)

$(X,\oplus,\otimes,ar{0},ar{1}) \oplus ext{ and } \otimes$

 \oplus

 \otimes

• Distributivity: $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$ $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$

Path Selection Function

Path Computing Function

Path Algebra Examples

\mathfrak{B}	X	⊕,	\otimes	ō	ī	description
E	$\{0, 1\}$	\max	\min	0	1	usable-path routing (the Boolean semi-ring)
M	$\mathbf{Z}\cup\{\infty\}$	\min	+	∞	0	minimum-weight routing
\mathfrak{M}^+	$\mathbb{Z}^+ \cup \{\infty\}$	\min	+	∞	0	minimum-weight routing, non-negative weights
\mathfrak{R}	[0, 1]	\max	\times	0	1	most-reliable routing
C	$\{0, \ 1, \ 2, \ldots, \ k\} \cup \{\infty\}$	\max	\min	0	∞	greatest-capacity routing

- $\blacktriangleright P1: A \to B \to C \to D$
- ▶ $P2: B \rightarrow C \rightarrow D$
- ▶ $P3 : A \rightarrow D$ $P2 = BC \otimes CD$ $P1 = AB \otimes P2$ $P1 \oplus P3 = P1$



Path Algebra -- Conditions

- Universal Conditions
 - Super-unitary
 - $\bar{1}$: zero weight
 - $\bar{1} \oplus x = \bar{1}$: zero weight is best possible no negative edge
 - Nilpotent

 $\overline{0}$: the worst weight

 $\forall a, \exists q, \text{ s.t. } a^q = \overline{0}$: loop has no benefits for all the instances

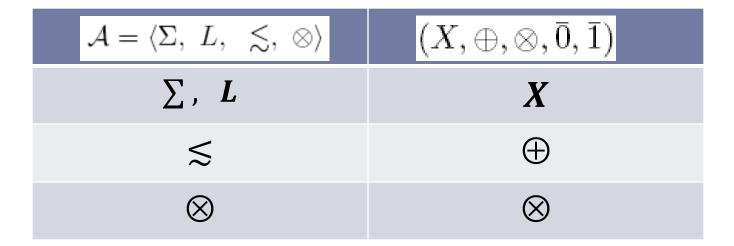
- Instance Condition $I = \langle \mathcal{G}, \mathcal{L}_{\mathfrak{B}}, B \rangle$
 - Absorptive

 $\overline{1} \preccurlyeq_{\mathfrak{B}} \mathcal{L}_{\mathfrak{B}}(v_1v_2v_3\cdots v_nv_1)$

Loop has no benefits for this instance

Routing Algebra

$$\mathcal{A}=\langle \Sigma,\ L,\ \lesssim,\ \otimes\rangle$$



Routing Algebra -- Conditions

Universal Condition

Monotonicity

 $\sigma \lesssim l \otimes \sigma$ for each $l \in L$ and for each $\sigma \in \Sigma$

- Instance Condition $I = \langle \mathcal{G}, \mathcal{L}_{\mathcal{A}}, \sigma_0 \rangle$
 - Freeness

For every $v_1v_2 \cdots v_nv_1$, and every $\{\sigma_1, \sigma_2, \cdots, \sigma_n\}$, there exists *i*, such that $\sigma_i < \mathcal{L}_A(v_i, v_{i+1}) \otimes \sigma_{i+1}$

Go to slide 15

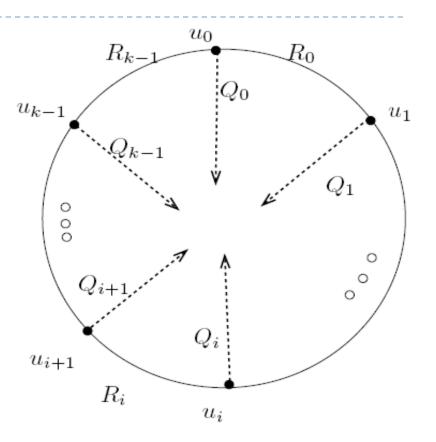
Stable Path Problem

No universal condition for SPP $S_{\rm spp} \,=\, (G, \mathcal{P}, \Lambda)$

- Every node v maintains a set of permitted paths \mathcal{P}^v to the destination, and a ranking function λ^v . If $P_1, P_2 \in \mathcal{P}^v$, and $\lambda^v(P_1) < \lambda^v(P_2)$, then P_2 is said to be *preferred over* P_1 .
- The path assignment is a solution if it is stable at each node u
 - The path assignment π maps each node to a path, $\pi(u) \in \mathcal{P}^u$
 - choices $(\pi, u) = \{(u \ v)\pi(v) \mid \{u, v\} \in E\} \cap \mathcal{P}^u$
 - Stable: $\pi(u) = \text{best}(\text{choices}(\pi, u), u)$

A Dispute Wheel

- (1) R_i is a path from u_i to u_{i+1}
- (2) $Q_i \in \mathcal{P}^{u_i}$
- $\blacktriangleright (3) R_i Q_{i+1} \in \mathcal{P}^{u_i}$
- (4) $\lambda^{u_i}(Q_i) \leq \lambda^{u_i}(R_iQ_{i+1})$
- Which path will u_i choose ?
- ► $Q_i \leq R_i Q_{i+1} \leq R_i R_{i+1} Q_{i+2}$ $\leq R_i R_{i+1} R_{i+2} Q_{i+3} \leq ...$ $\leq R_i R_{i+1} ... R_{i-1} Q_i \leq ...$
- No solution!



Stable Path Problem – Instance Condition

No dispute wheel

Revisit instance condition of Routing Algebra

Policy Structure & Routing Structure

Policy structure

 $S=\langle \mathfrak{X}, \ \preccurlyeq, \ \sqsubseteq\rangle$

- \mathfrak{X} : values that will be associated with routes
- ► ≤: x≤y means value x is at least as well-preferred as value y
- \sqsubseteq : x \sqsubseteq y means value y can be constructed from value x

S-Instance

 $I=\langle \mathcal{G}, \ \psi, \ B\rangle$

• ψ maps paths $P \in \mathcal{P}(v, v_0)$ to elements of \mathfrak{X} such that for all $P \in \mathcal{P}(v, v_0)$ and all $Q \in \mathcal{P}(w, v)$, we have $\psi(P) \sqsubseteq \psi$ (*QP*)

Policy Structure and Routing Structure

Routing Structure of an S-Instance

$$S_I = \langle \mathcal{P}^B_{\psi}, \preccurlyeq_I, \sqsubseteq_I \rangle$$

- Attention!
- $\dashv \exists I$ is the sub-path relation
- \sqsubseteq_1 is the preference relation

$$\mathcal{P}_{\psi}^{B} = \{P \in \mathcal{P}(v_{0}) \mid \psi(P) \notin B\},\$$

$$P \preccurlyeq_{I} Q \quad \Leftrightarrow \quad \text{there is a path } W \text{ such that } Q = WP,\$$

$$P \equiv_{I} Q \quad \Leftrightarrow \quad \text{head}(P) = \text{head}(Q) \text{ and } \psi(P) = \psi(Q)\$$

$$P \sqsubset_{I} Q \quad \Leftrightarrow \quad \text{head}(P) = \text{head}(Q) \text{ and } \psi(P) \prec \psi(Q)\$$

$$P \sqsubseteq_{I} Q \quad \Leftrightarrow \quad P \equiv_{I} Q \text{ or } P \sqsubset_{I} Q.$$

Policy Structure and Routing Structure

• Then we have :

$$P \preccurlyeq_{I} Q \Rightarrow \psi(P) \sqsubseteq \psi(Q)$$

$$P \sqsubseteq_{I} Q \Rightarrow \psi(P) \preccurlyeq \psi(Q)$$

$$P \sqsubset_{I} Q \Rightarrow \psi(P) \prec \psi(Q)$$

- ▶ $R \triangleq R_1 \bowtie R_2$ (join relation):
 - \triangleright R₁ and R₂ are over the same set X
 - $x R z \Leftrightarrow$ There exists $y \in X$ such that $x R_1 y$ and $y R_2 z$.

Policy Structure and Routing Structure

 $R_1 \preccurlyeq_I T_1 R_1 \sqsubset_I R_3 \preccurlyeq_I T_3 R_3 \sqsubset_I R_2 \preccurlyeq_I T_2 R_2 \sqsubset_I R_1$

- Instance Condition
 - $\mathfrak{R}_{I} \triangleq (\preccurlyeq_{I} \bowtie \sqsubset_{I})^{tc} \text{ is anti-reflexive}$
 - Anti-reflexive: (R is a relation) anti-reflexive, if x R x for all $x \in X$
 - A bad triangle: an example of dispute whee

- Universal Condition
 - $\mathscr{R}_S \triangleq (\sqsubseteq \bowtie \prec)^{tc}$ is anti-reflexive

The Rest of Chau's Paper [CGG06]

- Associate previous frameworks with policy structure and routing structure
 - Path algebras vs. policy/routing structure
 - Routing algebras vs. policy/routing structure
 - Stable path problems vs. routing structure
- Discuss the relation between the universal/instance conditions for all these theoretical frameworks

Routing Algebra Meta-Language (RAML)

• Objective:

- We can construct more interesting routing protocols
- All protocols constructed should have a solution

Motivation

- Constructing (complex) routing algebras is difficult and tedious
- Proving monotonicity condition is even worse
- Can we design a meta-language and make thing easier?

 $A = \langle \Sigma, \preceq, L, \oplus, \mathcal{O} \rangle \qquad \qquad \mathcal{A} = \langle \Sigma, L, \lesssim, \otimes \rangle$

RAML (cont'd)

Technique

- Design several "natural" operations
- Define some "basic" routing algebras
- Construct complex routing algebras from the basic ones by using the operations we define

RAML – Basic Algebras

Algebra	Description	Properties
ADD(n, m)	Natural number addition	Strict monotonicity
MULT(n, m)	Natural number product	Monotonicity
MULT _r (n, m)	Real number product	
MAX(n)	Maximum	Monotonicity
MIN(n)	Minimum	
LP(n)	Local preference	
OP(n)	Origin preference	Monotonicity
SEQ(n, m)	Sequences	Strict monotonicity
SIMSEQ(n, m)	Simple sequences	Strict monotonicity
TAGS(T)	Route tags	Monotonicity

ADD(n, m)

- $L = \{n, n+1, ..., m\}$
- ► $\Sigma = \{n, n+1, ..., m\} \cup \{\varphi\}$
- ► $i \oplus j = \varphi$, if $i + j \notin \{n, n+1, ..., m\}$
- $i \oplus j = i + j$, otherwise

Multiplications are defined similarly

ADD(1,5)							
\oplus	1	2	3	4	5	arphi	
1	2	3	4	5	arphi	arphi	
2	3	4	5	φ	φ	φ	
3	4	5	φ	arphi	arphi	arphi	
4	5	arphi	φ	arphi	φ	arphi	
 5	arphi	arphi	φ	arphi	arphi	arphi	

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _

- MAX(n), MIN(n), LP(n)
 - $L = \{1, 2, ..., n\}$
 - $\Sigma = \{1, 2, ..., n\} \cup \{\varphi\}$
- ▶ OP(n)

 \oplus

- $L = \{\kappa\}$
- $\Sigma = \{1, 2, ..., n\} \cup \{\varphi\}$

LP(3)

MAX(3)							
\oplus	1	2	3				
1	1	2	3				
2	2	2	3				
3	3	3	3				
	MIN(3)						
\oplus	1	2	3				
1	1	1	1				
2	1	2	2				
3	1	2	3				
OP(3)							
\oplus	1	2	3				
κ	1	2	3				

- SEQ(n, m)
 - $L = \{1, 2, ..., n\}$
 - $\Sigma = \{\epsilon\} \cup L^1 \cup L^2 \cup \dots \cup L^m \cup \{\varphi\}$

(the set of strings over alphabet L with length at most m)

•
$$i \oplus \sigma = \varphi$$
, if $|\sigma| = m$; $i \oplus \sigma = i :: \sigma$, otherwise

• $\sigma_1 \preccurlyeq \sigma_2 \Leftrightarrow |\sigma_1| \le |\sigma_2|$

SIMSEQ(n, m)

- $L = \{1, 2, ..., n\}$
- $i \oplus \sigma = \varphi$, if $|\sigma| = m$ or $i \in \sigma$; $i \oplus \sigma = i :: \sigma$, otherwise
- $\bullet \ \sigma_1 \preccurlyeq \sigma_2 \Leftrightarrow |\sigma_1| \le |\sigma_2|$

TAGS(T)

- T: type of objects (Integer, String, etc.)
- $\Sigma = 2^{T}$ (all finite sets of objects of type T)
- $L = \{(i, \sigma) \mid \sigma \in \Sigma\} \cup \{(d, \sigma) \mid \sigma \in \Sigma\} \cup \{\kappa\}$
- (i, σ) : insertion of elements
- (d, σ) : deletion of elements

\oplus	σ
(i, σ_1)	$\sigma \cup \sigma_1$
(d, σ_1)	σ / σ_1
κ	σ

RAML – Lexical Product

 $\bullet A \otimes B$

Given two routing algebras

$$A = (\Sigma_{A}, L_{A}, \leq_{A}, \bigoplus_{A}, \varphi_{A})$$
$$B = (\Sigma_{B}, L_{B}, \leq_{B}, \bigoplus_{B}, \varphi_{B})$$

 \blacktriangleright We want to define binary operation \otimes for constructing new routing algebra

$$A \otimes B = (\Sigma, L, \leq, \oplus, \varphi)$$

Motivation: multiple routing metrics (BGP, OSPF, etc.)

RAML – Lexical Product (cont'd)

Product Construction I

- $\Sigma = (\Sigma_{A} / \{\varphi_{A}\}) \times (\Sigma_{B} / \{\varphi_{B}\}) \cup \{\varphi\}$
- $(\sigma_{1A}, \sigma_{1B}) \leq (\sigma_{2A}, \sigma_{2B}) \Leftrightarrow \sigma_{1A} \prec_A \sigma_{2A} \text{ or } \sigma_{1A} =_A \sigma_{2A}, \sigma_{1B} \leq_B \sigma_{2B}$
- $L = L_{\rm A} \times L_{\rm B}$
- $(\lambda_A, \lambda_B) \oplus (\sigma_A, \sigma_B) = (\lambda_A \oplus_A \sigma_A, \lambda_B \oplus_B \sigma_B) \text{ if } \lambda_A \oplus_A \sigma_A \neq \varphi_A$ and $\lambda_B \oplus_B \sigma_B \neq \varphi_B$

►
$$(\lambda_{A}, \lambda_{B}) \oplus (\sigma_{A}, \sigma_{B}) = \varphi$$
 otherwise

RAML – Scoped Product

 $\bullet A \odot B$

Given two routing algebras

$$A = (\Sigma_{A}, L_{A}, \leq_{A}, \bigoplus_{A}, \varphi_{A})$$
$$B = (\Sigma_{B}, L_{B}, \leq_{B}, \bigoplus_{B}, \varphi_{B})$$

 \blacktriangleright We want to define binary operation \otimes for constructing new routing algebra

$$A \odot B = (\Sigma, L, \leq, \oplus, \varphi)$$

 Motivation: communication inside administrative entities vs. communication between administrative entities

e.g. $BGP = EBGP \odot IBGP$

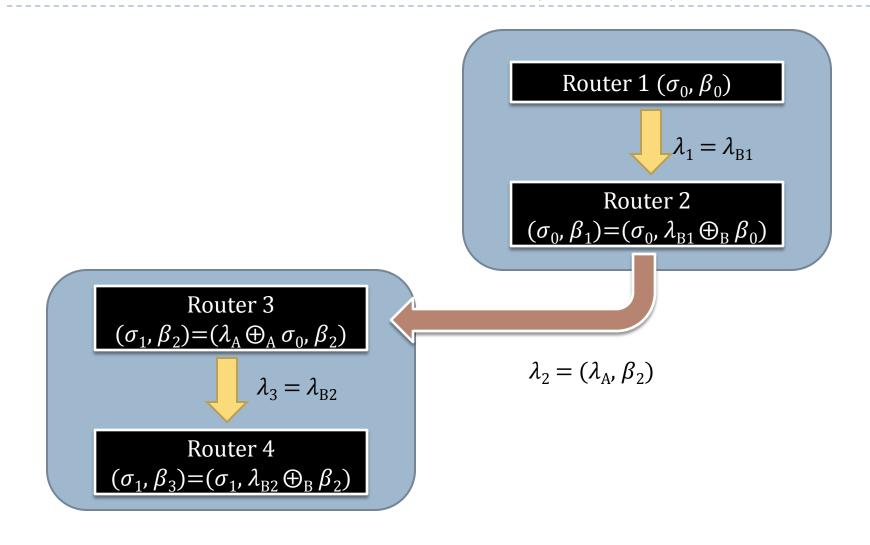
RAML – Scoped Product (cont'd)

Product Construction II

- $\Sigma = (\Sigma_{A} / \{\varphi_{A}\}) \times (\Sigma_{B} / \{\varphi_{B}\}) \cup \{\varphi\}$
- $(\sigma_{1A}, \sigma_{1B}) \preccurlyeq (\sigma_{2A}, \sigma_{2B}) \Leftrightarrow \sigma_{1A} \preccurlyeq_A \sigma_{2A} \text{ or } \sigma_{1A} =_A \sigma_{2A}, \sigma_{1B} \preccurlyeq_B \sigma_{2B}$
- $L = (L_{\rm A} \times \Sigma_{\rm B}) \cup L_{\rm B}$
- ▶ Here we assume w.l.o.g that $L_A \times \Sigma_B \cap L_B$ is empty
- For edges between entities, labels are of the form ($\lambda_{\rm A}$, $\sigma'_{\rm B}$)
- > For edges inside entities, labels are of the form $\lambda_{
 m B}$

\oplus	($\sigma_{ m A}$, $\sigma_{ m B}$)
$(\lambda_{\rm A}, \sigma'_{\rm B})$	$(\lambda_{ m A} \oplus_{ m A} \sigma_{ m A}$, $\sigma'_{ m B})$
$\lambda_{ m B}$	$(\sigma_{ ext{A}}$, $\lambda_{ ext{B}} \oplus_{ ext{B}} \sigma_{ ext{B}})$

RAML – Scoped Product (cont'd)



RAML – Disjunction

 $\bullet A \lhd B$

Given two routing algebras

$$A = (\Sigma_{A}, L_{A}, \leq_{A}, \bigoplus_{A}, \varphi_{A})$$
$$B = (\Sigma_{B}, L_{B}, \leq_{B}, \bigoplus_{B}, \varphi_{B})$$

 \blacktriangleright We want to define binary operation \otimes for constructing new routing algebra

$$A \lhd B = (\Sigma, L, \preccurlyeq, \oplus, \varphi)$$

• Motivation: we want to use both A and B in the sense that signatures in Σ_A have higher preference than signatures in Σ_B

RAML – Disjunction (cont'd)

Implementation

$$\begin{split} \Sigma &= (\Sigma_{A} / \{\varphi_{A}\}) \cup (\Sigma_{B} / \{\varphi_{B}\}) \cup \{\varphi\} \\ \bullet & \sigma_{1} \preccurlyeq \sigma_{2} \Leftrightarrow \sigma_{1}, \sigma_{2} \in \Sigma_{A}, \sigma_{1} \preccurlyeq_{A} \sigma_{2} \text{ or} \\ & \sigma_{1}, \sigma_{2} \in \Sigma_{B}, \sigma_{1} \preccurlyeq_{B} \sigma_{2} \text{ or} \\ & \sigma_{1} \in \Sigma_{A}, \sigma_{2} \in \Sigma_{B} \end{split}$$

▶ t : an injection function from $\Sigma_{\rm A}$ to $\Sigma_{\rm B}$

$$\blacktriangleright L = L_{\rm A} \cup L_{\rm B} \cup \{i\}$$

\oplus	$\sigma_{ m A}$	$\sigma_{ m B}$
$\lambda_{ m A}$	$\lambda_{ m A} \oplus \sigma_{ m A}$	arphi
$\lambda_{ m B}$	arphi	$\lambda_{ m \scriptscriptstyle B} \oplus \sigma_{ m \scriptscriptstyle B}$
i	$t(\sigma_{\rm A})$	arphi

RAML – Monotonicity Preservation

A	B	$A \otimes B$	$A \odot B$	$A \lhd B$
М	М	М	-	М
М	SM	SM	-	М
SM	М	SM	М	М
SM	SM	SM	SM	SM
SM	*	SM	-	-

RAML – Constructing BGP

- Constructing an IGP-like protocol
 - $GN = ADD(1, 2^{32}) \oplus SIMEQ(2^{32}, 30) \oplus TAGS(String)$
 - ▶ RAN = ADD(1, 2^{32}) \oplus SIMEQ(2^{32} , 30) \oplus TAGS(String)
 - ▶ MAN = ADD(1, 2^{32}) \oplus SIMEQ(2^{32} , 30) \oplus TAGS(String)
 - $MyIGP = GN \odot (RAN \odot MAN)$
- Constructing the real BGP is more tedious and is omitted here, see Metarouting paper [GS05] for more details

Open Problems and Discussion

Some of the universal/instance condition seems unnatural

- The freeness condition for routing algebras is seemingly "translated" from dispute wheel in stable path problem
- Can we find natural conditions which might reveal more insight of the convergence condition?
- Can we design a theoretical framework that allow security feature?
- Can we design meta-languages for other frameworks?

Thank you!

Comments Appreciated!