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BGP (Border Gateway Protocol)
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 A Network Layer Protocol

 Designed as the core routing protocol of the Internet

AS:  Autonomous System

 From Prof Mukherjee’s ECS 152 lecture notes
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http://networks.cs.ucdavis.edu/~mukherje/152a-sq09/lectures/Ch4-Network-Layer-4th-ed.pdf


BGP Routing Policy
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 An example:

 X does not want to route from B via X to C

 .. so X will not advertise to B a route to C

From Prof Mukherjee’s ECS 152 lecture notes
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http://networks.cs.ucdavis.edu/~mukherje/152a-sq09/lectures/Ch4-Network-Layer-4th-ed.pdf


BGP Divergence
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 BGP is not a pure distance-vector since the routing 

policies can override distance metrics

Distance vector:

 From time-to-time, each node sends its own distance vector 
estimate to neighbors

 When a node 𝑥 receives new DV estimate from neighbor, it 
updates its own DV using Bellman-Ford equation:

 The routing policies may conflict and cause BGP to 

diverge.

𝐷𝑥(𝑦) ← min y {c(𝑥, 𝑦) + 𝐷y(𝑦) } for each node 𝑦 ∊ 𝑵



BGP Divergence: An Example
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Example from [VGE00]



Theoretical Framworks
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 How to model the BGP routing problems?

Policy-based Routing

 Path Algebras

 Routing Algebras

 Stable Path Problem

 Policy Structure and Routing Structure

 And how to ensure the existence of a solution (stable 
routing)?

 Universal condition

 Instance condition



Path Algebras (Semi-rings)
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 𝑋 : Values that will be associated with routes and edges

 Commutative:  

 Associative:

 Identity: 

 Selectivity: 

 Associativity:

 Identity:

 Annihilator:



Path Algebra (cont.)
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and 

 Distributivity: 

Path Selection Function

Path Computing Function



Path Algebra Examples
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 𝑃1 : A → B → C → D

 𝑃2 : B → C → D

 𝑃3 : A → D
A

B C
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1
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Path Algebra -- Conditions
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 Universal Conditions

 Super-unitary

:  zero weight

: zero weight is best possible – no negative edge

 Nilpotent

: the worst weight

∀𝑎, ∃𝑞, s.t.                 : loop has no benefits for all the instances

 Instance Condition

 Absorptive

Loop has no benefits for this instance



Routing Algebra
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∑ ,   𝑳 𝑿

≲ ⊕

⊗ ⊗



Routing Algebra -- Conditions
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 Universal Condition

 Monotonicity

 Instance Condition      I = 
 Freeness

For every                    , and every                         , there exists 

i,  such that 𝜎i<𝓛𝐴(𝑣i, 𝑣i+1) ⨂ 𝜎i+1

Go to slide 15



Stable Path Problem
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 No universal condition for SPP

 Every node v maintains a set of permitted paths       to 

the destination ,  and a ranking function     . If                , 

and                         , then                                           .

 The path assignment is a solution if it is stable at each 

node u
 The path assignment π maps each node to a path,



 Stable:  



A Dispute Wheel
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 (1) Ri is a path from ui to ui+1

 (2) 

 (3)

 (4)

 Which path will ui choose ? 

 Qi≤RiQi+1≤RiRi+1Qi+2

≤RiRi+1Ri+2Qi+3≤…

≤RiRi+1…Ri-1Qi ≤…

 No solution!



Stable Path Problem – Instance Condition
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 No dispute wheel

 Revisit instance condition of Routing Algebra



Policy Structure & Routing Structure
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 Policy structure

 𝖃:   values that will be associated with routes

 ≼: x≼y means value x is at least as well-preferred as value y

 ⊑: x⊑y means value y can be constructed from value x

 S-Instance

 𝝍 maps paths                            to elements of 𝖃 such that for 
all                             and all                        , we have 𝝍(P ) ⊑ 𝝍
(QP)



Policy Structure and Routing Structure
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 Routing Structure of an S-Instance

 Attention!

 is the sub-path relation

 is the preference relation



Policy Structure and Routing Structure
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 Then we have :

 (join relation):

 R1 and R2 are over the same set X

 x R z ⇔ There exists            such that            and 



Policy Structure and Routing Structure
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 Instance Condition 

 is anti-reflexive

 Anti-reflexive: (R is a relation)

 A bad triangle: an example of dispute wheel

 Universal Condition

 is anti-reflexive



The Rest of Chau’s Paper [CGG06]
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 Associate previous frameworks with policy structure and 

routing structure

 Path algebras vs. policy/routing structure 

 Routing algebras vs. policy/routing structure

 Stable path problems vs. routing structure

 Discuss the relation between the universal/instance 

conditions for all these theoretical frameworks



Routing Algebra Meta-Language (RAML)
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 Objective:

 We can construct more interesting routing protocols

 All protocols constructed should have a solution

 Motivation

 Constructing (complex) routing algebras is difficult and tedious

 Proving monotonicity condition is even worse

 Can we design a meta-language and make thing easier? 



RAML (cont’d)
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 Technique

 Design several “natural” operations

 Define some “basic” routing algebras

 Construct complex routing algebras from the basic ones by 

using the operations we define



RAML – Basic Algebras

5/29/200924

Algebra Description Properties

ADD(n, m) Natural number addition Strict monotonicity

MULT(n, m) Natural number product Monotonicity

MULTr(n, m) Real number product

MAX(n) Maximum Monotonicity

MIN(n) Minimum

LP(n) Local preference

OP(n) Origin preference Monotonicity

SEQ(n, m) Sequences Strict monotonicity

SIMSEQ(n, m) Simple sequences Strict monotonicity

TAGS(T) Route tags Monotonicity



RAML – Basic Algebras (cont’d)
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 ADD(n, m)

 𝐿 = *n, n+1, … , m+

 𝛴 = *n, n+1, … , m+ ⋃ *𝜑}

 i ⨁ j = 𝜑, if i + j ∉ *n, n+1, … , m+

 i ⨁ j = i + j, otherwise

 Multiplications are defined similarly

ADD(1,5)

⨁ 1 2 3 4 5 𝜑

1 2 3 4 5 𝜑 𝜑

2 3 4 5 𝜑 𝜑 𝜑

3 4 5 𝜑 𝜑 𝜑 𝜑

4 5 𝜑 𝜑 𝜑 𝜑 𝜑

5 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑



RAML – Basic Algebras (cont’d)
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 MAX(n), MIN(n), LP(n)

 𝐿 = *1, 2, …, n+

 𝛴 = *1, 2, …, n+ ⋃ *𝜑}

 OP(n)

 𝐿 = {𝜅}

 𝛴 = *1, 2, …, n+ ⋃ *𝜑}

MAX(3)

⨁ 1 2 3

1 1 2 3

2 2 2 3

3 3 3 3

MIN(3)

⨁ 1 2 3

1 1 1 1

2 1 2 2

3 1 2 3

LP(3)

⨁ 1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

OP(3)

⨁ 1 2 3

𝜅 1 2 3



RAML – Basic Algebras (cont’d)
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 SEQ(n, m)

 𝐿 = *1, 2, … , n+

 𝛴 = {𝜖+ ⋃ 𝐿1 ⋃ 𝐿2 ⋃ … ⋃ 𝐿m ⋃ *𝜑}

(the set of strings over alphabet 𝐿 with length at most m)

 𝑖 ⨁ 𝜎 = 𝜑, if |𝜎| = m; 𝑖 ⨁ 𝜎 = 𝑖 ∷ 𝜎, otherwise

 𝜎1 ≼ 𝜎2 ⇔ |𝜎1| ≤ |𝜎2| 

 SIMSEQ(n, m)

 𝐿 = *1, 2, … , n+

 𝛴 = {𝜖+ ⋃ 𝐿1 ⋃ 𝐿2 ⋃ … ⋃ 𝐿m ⋃ *𝜑}

 𝑖 ⨁ 𝜎 = 𝜑, if |𝜎| = m or 𝑖 ∈ 𝜎; 𝑖 ⨁ 𝜎 = 𝑖 ∷ 𝜎, otherwise

 𝜎1 ≼ 𝜎2 ⇔ |𝜎1| ≤ |𝜎2| 



RAML – Basic Algebras (cont’d)
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 TAGS(T)

 T :  type of objects (Integer, String, etc.)

 𝛴 = 2T (all finite sets of objects of type T)

 𝐿 = {(i, 𝜎) | 𝜎 ∈ 𝛴+ ⋃ *(d, 𝜎) | 𝜎 ∈ 𝛴+ ⋃ *𝜅}

 (i, 𝜎) : insertion of elements

 (d, 𝜎) : deletion of elements

⨁ 𝜎

(i, 𝜎1) 𝜎 ⋃ 𝜎1

(d, 𝜎1) 𝜎 ∕ 𝜎1

𝜅 𝜎



RAML – Lexical Product
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 𝐴 ⨂ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B) 

 We want to define binary operation ⨂ for constructing new 

routing algebra

𝐴 ⨂ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: multiple routing metrics (BGP, OSPF, etc.)



RAML – Lexical Product (cont’d)
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 Product Construction I

 𝛴 = (𝛴A ∕ *𝜑A}) × (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 (𝜎1A, 𝜎1B) ≼ (𝜎2A, 𝜎2B) ⇔ 𝜎1A ≺A 𝜎2A or 𝜎1A =A 𝜎2A, 𝜎1B ≼B 𝜎2B

 𝐿 = 𝐿A × 𝐿B

 (𝜆A, 𝜆B) ⨁ (𝜎A, 𝜎B) = (𝜆A ⨁A 𝜎A, 𝜆B ⨁B 𝜎B) if 𝜆A ⨁A 𝜎A ≠ 𝜑A

and 𝜆B ⨁B 𝜎B ≠ 𝜑B

 (𝜆A, 𝜆B) ⨁ (𝜎A, 𝜎B) = 𝜑 otherwise



RAML – Scoped Product
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 𝐴 ⨀ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B) 

 We want to define binary operation ⨂ for constructing new 

routing algebra

𝐴 ⨀ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: communication inside administrative entities vs. 

communication between administrative entities

e.g.  BGP = EBGP ⨀ IBGP



RAML – Scoped Product (cont’d)
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 Product Construction II

 𝛴 = (𝛴A ∕ *𝜑A}) × (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 (𝜎1A, 𝜎1B) ≼ (𝜎2A, 𝜎2B) ⇔ 𝜎1A ≼A 𝜎2A or 𝜎1A =A 𝜎2A, 𝜎1B ≼B 𝜎2B

 𝐿 = (𝐿A × 𝛴B) ⋃ 𝐿B

 Here we assume w.l.o.g that 𝐿A × 𝛴B ⋂ 𝐿B is empty

 For edges between entities, labels are of the form (𝜆A, 𝜎’B)

 For edges inside entities, labels are of the form 𝜆B

⨁ (𝜎A , 𝜎B)

(𝜆A, 𝜎’B) (𝜆A ⨁A 𝜎A , 𝜎’B)

𝜆B (𝜎A , 𝜆B ⨁B 𝜎B)



RAML – Scoped Product (cont’d)
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Router 1 (𝜎0, 𝛽0)

Router 2 
(𝜎0, 𝛽1)=(𝜎0, 𝜆B1 ⨁B 𝛽0)

𝜆1 = 𝜆B1

Router 3 
(𝜎1, 𝛽2)=(𝜆A ⨁A 𝜎0, 𝛽2)

𝜆3 = 𝜆B2

𝜆2 = (𝜆A, 𝛽2)

Router 4 
(𝜎1, 𝛽3)=(𝜎1, 𝜆B2 ⨁B 𝛽2)



RAML – Disjunction
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 𝐴 ⊲ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B) 

 We want to define binary operation ⨂ for constructing new 

routing algebra

𝐴 ⊲ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: we want to use both 𝐴 and 𝐵 in the sense that

signatures in 𝛴A have higher preference than signatures in 𝛴B



RAML – Disjunction (cont’d)
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 Implementation

 𝛴 = (𝛴A ∕ *𝜑A+) ⋃ (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 𝜎1 ≼ 𝜎2 ⇔𝜎1, 𝜎2 ∈ 𝛴A, 𝜎1 ≼A 𝜎2 or

𝜎1, 𝜎2 ∈ 𝛴B, 𝜎1 ≼B 𝜎2 or

𝜎1 ∈ 𝛴A , 𝜎2 ∈ 𝛴B

 𝑡 : an injection function from 𝛴A to 𝛴B

 𝐿 = 𝐿A ⋃ 𝐿B ⋃ *𝑖}

⨁ 𝜎A 𝜎B

𝜆A 𝜆A ⨁ 𝜎A 𝜑

𝜆B 𝜑 𝜆B ⨁ 𝜎B

𝑖 𝑡(𝜎A) 𝜑



RAML – Monotonicity Preservation
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𝐴 𝐵 𝐴 ⨂ 𝐵 𝐴 ⨀ 𝐵 𝐴 ⊲ 𝐵

M M M - M

M SM SM - M

SM M SM M M

SM SM SM SM SM

SM * SM - -



RAML – Constructing BGP
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 Constructing an IGP-like protocol

 GN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 RAN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 MAN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 MyIGP = GN ⨀ (RAN ⨀ MAN)

 Constructing the real BGP is more tedious and is omitted 

here, see Metarouting paper [GS05] for more details



Open Problems and Discussion
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 Some of the universal/instance condition seems unnatural

 The freeness condition for routing algebras is seemingly 

“translated” from dispute wheel in stable path problem

 Can we find natural conditions which might reveal more insight 

of the convergence condition?

 Can we design a theoretical framework that allow 

security feature?

 Can we design meta-languages for other frameworks?



Thank  you!
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 Comments Appreciated!


