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BGP (Border Gateway Protocol)
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 A Network Layer Protocol

 Designed as the core routing protocol of the Internet

AS:  Autonomous System

 From Prof Mukherjee’s ECS 152 lecture notes
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http://networks.cs.ucdavis.edu/~mukherje/152a-sq09/lectures/Ch4-Network-Layer-4th-ed.pdf


BGP Routing Policy
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 An example:

 X does not want to route from B via X to C

 .. so X will not advertise to B a route to C

From Prof Mukherjee’s ECS 152 lecture notes
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BGP Divergence
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 BGP is not a pure distance-vector since the routing 

policies can override distance metrics

Distance vector:

 From time-to-time, each node sends its own distance vector 
estimate to neighbors

 When a node 𝑥 receives new DV estimate from neighbor, it 
updates its own DV using Bellman-Ford equation:

 The routing policies may conflict and cause BGP to 

diverge.

𝐷𝑥(𝑦) ← min y {c(𝑥, 𝑦) + 𝐷y(𝑦) } for each node 𝑦 ∊ 𝑵



BGP Divergence: An Example
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Theoretical Framworks
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 How to model the BGP routing problems?

Policy-based Routing

 Path Algebras

 Routing Algebras

 Stable Path Problem

 Policy Structure and Routing Structure

 And how to ensure the existence of a solution (stable 
routing)?

 Universal condition

 Instance condition



Path Algebras (Semi-rings)
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 𝑋 : Values that will be associated with routes and edges

 Commutative:  

 Associative:

 Identity: 

 Selectivity: 

 Associativity:

 Identity:

 Annihilator:



Path Algebra (cont.)
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and 

 Distributivity: 

Path Selection Function

Path Computing Function



Path Algebra Examples
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 𝑃1 : A → B → C → D

 𝑃2 : B → C → D

 𝑃3 : A → D
A
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Path Algebra -- Conditions
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 Universal Conditions

 Super-unitary

:  zero weight

: zero weight is best possible – no negative edge

 Nilpotent

: the worst weight

∀𝑎, ∃𝑞, s.t.                 : loop has no benefits for all the instances

 Instance Condition

 Absorptive

Loop has no benefits for this instance



Routing Algebra
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∑ ,   𝑳 𝑿

≲ ⊕

⊗ ⊗



Routing Algebra -- Conditions
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 Universal Condition

 Monotonicity

 Instance Condition      I = 
 Freeness

For every                    , and every                         , there exists 

i,  such that 𝜎i<𝓛𝐴(𝑣i, 𝑣i+1) ⨂ 𝜎i+1

Go to slide 15



Stable Path Problem
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 No universal condition for SPP

 Every node v maintains a set of permitted paths       to 

the destination ,  and a ranking function     . If                , 

and                         , then                                           .

 The path assignment is a solution if it is stable at each 

node u
 The path assignment π maps each node to a path,



 Stable:  



A Dispute Wheel
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 (1) Ri is a path from ui to ui+1

 (2) 

 (3)

 (4)

 Which path will ui choose ? 

 Qi≤RiQi+1≤RiRi+1Qi+2

≤RiRi+1Ri+2Qi+3≤…

≤RiRi+1…Ri-1Qi ≤…

 No solution!



Stable Path Problem – Instance Condition
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 No dispute wheel

 Revisit instance condition of Routing Algebra



Policy Structure & Routing Structure
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 Policy structure

 𝖃:   values that will be associated with routes

 ≼: x≼y means value x is at least as well-preferred as value y

 ⊑: x⊑y means value y can be constructed from value x

 S-Instance

 𝝍 maps paths                            to elements of 𝖃 such that for 
all                             and all                        , we have 𝝍(P ) ⊑ 𝝍
(QP)



Policy Structure and Routing Structure
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 Routing Structure of an S-Instance

 Attention!

 is the sub-path relation

 is the preference relation



Policy Structure and Routing Structure
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 Then we have :

 (join relation):

 R1 and R2 are over the same set X

 x R z ⇔ There exists            such that            and 



Policy Structure and Routing Structure
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 Instance Condition 

 is anti-reflexive

 Anti-reflexive: (R is a relation)

 A bad triangle: an example of dispute wheel

 Universal Condition

 is anti-reflexive



The Rest of Chau’s Paper [CGG06]
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 Associate previous frameworks with policy structure and 

routing structure

 Path algebras vs. policy/routing structure 

 Routing algebras vs. policy/routing structure

 Stable path problems vs. routing structure

 Discuss the relation between the universal/instance 

conditions for all these theoretical frameworks



Routing Algebra Meta-Language (RAML)
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 Objective:

 We can construct more interesting routing protocols

 All protocols constructed should have a solution

 Motivation

 Constructing (complex) routing algebras is difficult and tedious

 Proving monotonicity condition is even worse

 Can we design a meta-language and make thing easier? 



RAML (cont’d)
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 Technique

 Design several “natural” operations

 Define some “basic” routing algebras

 Construct complex routing algebras from the basic ones by 

using the operations we define



RAML – Basic Algebras
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Algebra Description Properties

ADD(n, m) Natural number addition Strict monotonicity

MULT(n, m) Natural number product Monotonicity

MULTr(n, m) Real number product

MAX(n) Maximum Monotonicity

MIN(n) Minimum

LP(n) Local preference

OP(n) Origin preference Monotonicity

SEQ(n, m) Sequences Strict monotonicity

SIMSEQ(n, m) Simple sequences Strict monotonicity

TAGS(T) Route tags Monotonicity



RAML – Basic Algebras (cont’d)
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 ADD(n, m)

 𝐿 = *n, n+1, … , m+

 𝛴 = *n, n+1, … , m+ ⋃ *𝜑}

 i ⨁ j = 𝜑, if i + j ∉ *n, n+1, … , m+

 i ⨁ j = i + j, otherwise

 Multiplications are defined similarly

ADD(1,5)

⨁ 1 2 3 4 5 𝜑

1 2 3 4 5 𝜑 𝜑

2 3 4 5 𝜑 𝜑 𝜑

3 4 5 𝜑 𝜑 𝜑 𝜑

4 5 𝜑 𝜑 𝜑 𝜑 𝜑

5 𝜑 𝜑 𝜑 𝜑 𝜑 𝜑



RAML – Basic Algebras (cont’d)
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 MAX(n), MIN(n), LP(n)

 𝐿 = *1, 2, …, n+

 𝛴 = *1, 2, …, n+ ⋃ *𝜑}

 OP(n)

 𝐿 = {𝜅}

 𝛴 = *1, 2, …, n+ ⋃ *𝜑}

MAX(3)

⨁ 1 2 3

1 1 2 3

2 2 2 3

3 3 3 3

MIN(3)

⨁ 1 2 3

1 1 1 1

2 1 2 2

3 1 2 3

LP(3)

⨁ 1 2 3

1 1 1 1

2 2 2 2

3 3 3 3

OP(3)

⨁ 1 2 3

𝜅 1 2 3



RAML – Basic Algebras (cont’d)
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 SEQ(n, m)

 𝐿 = *1, 2, … , n+

 𝛴 = {𝜖+ ⋃ 𝐿1 ⋃ 𝐿2 ⋃ … ⋃ 𝐿m ⋃ *𝜑}

(the set of strings over alphabet 𝐿 with length at most m)

 𝑖 ⨁ 𝜎 = 𝜑, if |𝜎| = m; 𝑖 ⨁ 𝜎 = 𝑖 ∷ 𝜎, otherwise

 𝜎1 ≼ 𝜎2 ⇔ |𝜎1| ≤ |𝜎2| 

 SIMSEQ(n, m)

 𝐿 = *1, 2, … , n+

 𝛴 = {𝜖+ ⋃ 𝐿1 ⋃ 𝐿2 ⋃ … ⋃ 𝐿m ⋃ *𝜑}

 𝑖 ⨁ 𝜎 = 𝜑, if |𝜎| = m or 𝑖 ∈ 𝜎; 𝑖 ⨁ 𝜎 = 𝑖 ∷ 𝜎, otherwise

 𝜎1 ≼ 𝜎2 ⇔ |𝜎1| ≤ |𝜎2| 



RAML – Basic Algebras (cont’d)

5/29/200928

 TAGS(T)

 T :  type of objects (Integer, String, etc.)

 𝛴 = 2T (all finite sets of objects of type T)

 𝐿 = {(i, 𝜎) | 𝜎 ∈ 𝛴+ ⋃ *(d, 𝜎) | 𝜎 ∈ 𝛴+ ⋃ *𝜅}

 (i, 𝜎) : insertion of elements

 (d, 𝜎) : deletion of elements

⨁ 𝜎

(i, 𝜎1) 𝜎 ⋃ 𝜎1

(d, 𝜎1) 𝜎 ∕ 𝜎1

𝜅 𝜎



RAML – Lexical Product
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 𝐴 ⨂ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B) 

 We want to define binary operation ⨂ for constructing new 

routing algebra

𝐴 ⨂ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: multiple routing metrics (BGP, OSPF, etc.)



RAML – Lexical Product (cont’d)
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 Product Construction I

 𝛴 = (𝛴A ∕ *𝜑A}) × (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 (𝜎1A, 𝜎1B) ≼ (𝜎2A, 𝜎2B) ⇔ 𝜎1A ≺A 𝜎2A or 𝜎1A =A 𝜎2A, 𝜎1B ≼B 𝜎2B

 𝐿 = 𝐿A × 𝐿B

 (𝜆A, 𝜆B) ⨁ (𝜎A, 𝜎B) = (𝜆A ⨁A 𝜎A, 𝜆B ⨁B 𝜎B) if 𝜆A ⨁A 𝜎A ≠ 𝜑A

and 𝜆B ⨁B 𝜎B ≠ 𝜑B

 (𝜆A, 𝜆B) ⨁ (𝜎A, 𝜎B) = 𝜑 otherwise



RAML – Scoped Product
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 𝐴 ⨀ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B) 

 We want to define binary operation ⨂ for constructing new 

routing algebra

𝐴 ⨀ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: communication inside administrative entities vs. 

communication between administrative entities

e.g.  BGP = EBGP ⨀ IBGP



RAML – Scoped Product (cont’d)
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 Product Construction II

 𝛴 = (𝛴A ∕ *𝜑A}) × (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 (𝜎1A, 𝜎1B) ≼ (𝜎2A, 𝜎2B) ⇔ 𝜎1A ≼A 𝜎2A or 𝜎1A =A 𝜎2A, 𝜎1B ≼B 𝜎2B

 𝐿 = (𝐿A × 𝛴B) ⋃ 𝐿B

 Here we assume w.l.o.g that 𝐿A × 𝛴B ⋂ 𝐿B is empty

 For edges between entities, labels are of the form (𝜆A, 𝜎’B)

 For edges inside entities, labels are of the form 𝜆B

⨁ (𝜎A , 𝜎B)

(𝜆A, 𝜎’B) (𝜆A ⨁A 𝜎A , 𝜎’B)

𝜆B (𝜎A , 𝜆B ⨁B 𝜎B)



RAML – Scoped Product (cont’d)
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Router 1 (𝜎0, 𝛽0)

Router 2 
(𝜎0, 𝛽1)=(𝜎0, 𝜆B1 ⨁B 𝛽0)

𝜆1 = 𝜆B1

Router 3 
(𝜎1, 𝛽2)=(𝜆A ⨁A 𝜎0, 𝛽2)

𝜆3 = 𝜆B2

𝜆2 = (𝜆A, 𝛽2)

Router 4 
(𝜎1, 𝛽3)=(𝜎1, 𝜆B2 ⨁B 𝛽2)



RAML – Disjunction
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 𝐴 ⊲ 𝐵

 Given two routing algebras

𝐴 = (𝛴A, 𝐿A, ≼A, ⨁A, 𝜑A)

𝐵 = (𝛴B, LB, ≼B, ⨁B, 𝜑B) 

 We want to define binary operation ⨂ for constructing new 

routing algebra

𝐴 ⊲ 𝐵 = (𝛴, 𝐿, ≼, ⨁, 𝜑)

 Motivation: we want to use both 𝐴 and 𝐵 in the sense that

signatures in 𝛴A have higher preference than signatures in 𝛴B



RAML – Disjunction (cont’d)
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 Implementation

 𝛴 = (𝛴A ∕ *𝜑A+) ⋃ (𝛴B ∕ *𝜑B+) ⋃ *𝜑}

 𝜎1 ≼ 𝜎2 ⇔𝜎1, 𝜎2 ∈ 𝛴A, 𝜎1 ≼A 𝜎2 or

𝜎1, 𝜎2 ∈ 𝛴B, 𝜎1 ≼B 𝜎2 or

𝜎1 ∈ 𝛴A , 𝜎2 ∈ 𝛴B

 𝑡 : an injection function from 𝛴A to 𝛴B

 𝐿 = 𝐿A ⋃ 𝐿B ⋃ *𝑖}

⨁ 𝜎A 𝜎B

𝜆A 𝜆A ⨁ 𝜎A 𝜑

𝜆B 𝜑 𝜆B ⨁ 𝜎B

𝑖 𝑡(𝜎A) 𝜑



RAML – Monotonicity Preservation
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𝐴 𝐵 𝐴 ⨂ 𝐵 𝐴 ⨀ 𝐵 𝐴 ⊲ 𝐵

M M M - M

M SM SM - M

SM M SM M M

SM SM SM SM SM

SM * SM - -



RAML – Constructing BGP
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 Constructing an IGP-like protocol

 GN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 RAN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 MAN = ADD(1, 232) ⨁ SIMEQ(232, 30) ⨁ TAGS(String)

 MyIGP = GN ⨀ (RAN ⨀ MAN)

 Constructing the real BGP is more tedious and is omitted 

here, see Metarouting paper [GS05] for more details



Open Problems and Discussion
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 Some of the universal/instance condition seems unnatural

 The freeness condition for routing algebras is seemingly 

“translated” from dispute wheel in stable path problem

 Can we find natural conditions which might reveal more insight 

of the convergence condition?

 Can we design a theoretical framework that allow 

security feature?

 Can we design meta-languages for other frameworks?



Thank  you!
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 Comments Appreciated!


