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Why do we care about community structure?



Large Networks



Discussion Outline

• Overview of past work on community structure.

• How to determine the “best” number of communities.

• Fast linear algebra based method.

• Bringing in statistics.



A Brief History of Methods

• Spectral methods, graph 
partitioning problems.

• A well known example is 
spectral bisection, 
which uses the graph/
network Laplacian.

• In the special case of a 
network having only two 
communities, Fiedler proposed 
a method for identifying the the 
members nodes.

Lij = δijki −Aij



A Brief History of Methods

• Hierarchical clustering: groups nodes into communities such 
that nodes within a community are similar to each other in 
some sense; widely used in sociology.

• Technique 1) calculate a weight,       for every pair of nodes 
in the network 2) then take the       nodes with no edges 
between them an add edges between pairs one by one in 
order of their weights, from strongest to weakest.

• Many ways exist for calculating the         values. 

• The entire process is frequently represented as a 
dendrogram, a visualization of the vertices coalescing into 
communities.  
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A Brief History of Methods



• Girvan-Newman Algorithm: a 
divisive method for determining 
community structure that focuses 
on the betweenness of edges.

• Edge betweenness: the number 
of shortest paths between pairs 
of vertices that run along an 
edge.

• Removing edges of high 
betweenness breaks up the 
connected network into 
communities.

GN Algorithm

Algorithm

1. Calculate the betweenness for all 
edges in the network.

2. Remove the edge with the 
highest betweenness.

3. Recalculate betweenness for all 
edges affected by the removal.

4. Repeat from steps 2 until no 
edges remain.

M. Girvan and M.E.J. Newman, “Community structure in 
social and biological networks” Proc. Natl. Acad. Sci. USA 
99, 7821–7826 (2002). 



GN Algorithm



GN Algorithm

The classic 
“Karate Club” 

example



Modularity

• Introduced by Newman and Girvan to quantify which division of a 
network into communities/groups was the best.

• Related to Newman’s work on assortativity in networks, “Mixing 
patterns in networks” Phys. Rev. E 67, 026126 (2003)

• Modularity: the fraction of edges falling within communities 
minus the expected fraction of such edges.

the fraction of all edges in the network that link 
vertices in community i to vertices in community j. 

eij :

ai =
∑

j

eij the fraction of edges that connect to vertices in 
community i.

Q =
∑

i

(eii − a2
i ) = Tre− ||e2||

M.E.J. Newman  and M. Girvan, “Finding and evaluating community 
structure in networks” Phys. Rev. E 69, 026113 (2004) 



Modularity

M.E.J. Newman  and M. Girvan, “Finding and evaluating community 
structure in networks” Phys. Rev. E 69, 026113 (2004) 

Again the 
“Karate Club”



Modularity
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We love to study ourselves . . . 



A New-New Approach

- Newman later returned to the subject of 
community structure and modularity with 
a new-new approach.

- Modularity maximization was the leading 
tool for determining optimal community 
structure.

- Simulated annealing had been shown 
to be very successful, but slow.

M. E. J. Newman, Proc. Natl. 
Acad. Sci. USA 103, 8577–
8582 (2006). 



Calculating Modularity

Rewrite modularity using the adjacency matrix.

How do we determine the “expected” 
number of edges between two vertices?

Aij =

{

1, if there is an edge from j to i

0, otherwise .

ci = the community to which i belongs.
Pij = the expected number of edges from j to i.

Q =
1

2m

n∑

ij=1

[Aij − Pij ]δci,cj

Pij =
kikj

2m



Division of a Network into Two Communities
sj = −1si = +1

δij =
1

2
(sisj + 1)



Again with the “Karate Club”



Communities with Edge Direction Bias



Communities with Edge Direction Bias



Edge Direction Bias in Real Networks
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Edge Direction Bias in Real Networks
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Exploratory Analysis of Structure in Networks

- Previously we identified communities in 
networks because we specifically 
sought a method to detect modules in 
networks.

- Reliance on specific measures of 
network structure where we are 
required to know the type of structure, 
for which we are looking, in advance 
can be limiting.

- We turn to probabilistic techniques and 
the Expectation Maximization (EM) 
Algorithm to identify general patterns of 
connection between vertices.



The Method

There are three types of quantities in this method of approach.

1. Observed data: the actual edges falling between pairs of 
vertices in a network (    ).

2. Missing data: we assume that the vertices divide into c 
groups.  We denote the group to which vertex   belongs 
as     and set of all missing data as

3. Model parameters: they describe the patterns of vertices in 
different groups (θ, π).

A

i

gi g.

θri =

the probability that there exists an edge
from a vertex in group r to a vertex i

πr = the probability of a vertex belonging to group r

c∑

r=1

πr = 1

n∑

i=1

θri = 1



The likelihood of the data given the model is

where

Frequently, one works not with the likelihood itself, but with the 
log-likelihood.

A Likelihood Problem

Pr(A|g,π, θ) =
∏

ij

θ
Aij

gj,i
and Pr(g|π, θ) =

∏

j

πgj
.

Pr(A,g|π, θ) = Pr(A|g,π, θ)Pr(g|π, θ),

L = ln Pr(A,g|π, θ) =
∑

j

[

lnπgj
+

∏

i

θ
Aij

gj,i

]

.



We cannot directly observe g.

It is, however, possible to calculate an expected value for the 
log-likelihood over all possible values of g. 

where

Dealing with the “Missing” Data

L =

c∑

r=1

n∑

j=1

qrj

[

lnπr +

n∑

i=1

Aij ln θri

]

qjr = Pr(gj = r|A,π, θ) =
Pr(A,gj = r|π, θ)

Pr(A|π, θ)
=

πr

∏
i θ

Aij

ri
∑

s πs

∏
i θ

Aij

si

.

L =

c∑

g1=1

· · ·

c∑

gn=1

Pr(g|A, θ,π)

n∑

j=1

[

lnπgj
+

n∑

i=1

Aij lnθgj,i

]



The EM Algorithm

- Initialize model parameters (θ, π) with random values.

- Find the probability a given vertex    is a member of group   
(E-step).

- Maximize the model parameters (M-step)

- Iterate until convergence.

qjr =

πr

∏
i θ

Aij

ri
∑

s πs

∏
i θ

Aij

si

.

πr =

1

n

∑

i

qir θri =

∑
j Aijqjr

∑
j kjqjr

.

rj



The AddHealth Network



Example: Karate Club



Example: Word Network



Example: Assortative/Dissassortative Network
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Example: AddHealth



Example: A “Keystone” Network



Example: A “Keystone” Network



“Big Ten” Results with the EM Algorithm 
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Vertex shading 
based on probability 
of being assigned to 
group 1.

Vertex size based 
on probability of 
being beaten by 
teams assigned to 
group 1.



Example: The “Big Ten” Conference
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