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Today

• Robustness of networks

• Optimization and network growth

• Internet overview



Typical distribution in node degree

The “Internet” “Who-is-Who” network
Faloutsos3, SIGCOMM 1999 Szendröi and Csányi

p(k) ∼ k−2.16 p(k) = ck−γe−αk
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• Small data sets, power laws vs other similar distributions?
•What is the “Internet”/ what level? (e.g., router vs AS)



A power law is “scale-free”

• Power law for “x”, means “scale-free” in x:

p(bx) = (bx)−γ = b−γp(x)

p(bk)
p(k) = b−γ regardless of k.

In contrast consider: p(k) = A exp(−k).

So p(bk) = A exp(−bk).

p(bk)
p(k) = exp[−k(b− 1)] dependent on k



Power law degree distribution 6= “scale-free network”

• Power law for “x”, means “scale-free” in x.

• BUT only for that aspect, “x”. May have a lot of different
structures at different scales.

• More precise: “network with scale-free degree distribution”



“Scale-rich” networks
• L. Li and D. Alderson and W. Willinger and J. Doyle, Proceedings of ACM SIGCOMM, 2004;

• Doyle, Alderson, Li, Low, Roughan, Shalunov, Tanaka, Willinger PNAS, 2005.

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.

All these networks have same degree distribution, but very
different internal structures.



Robustness of a network

• Robustness/Resilience: A network should be able to absorb
disturbance, undergo change and essentially maintain its
functionality despite failure of individual components of the
network.

• Often studied as maintaining connectivity despite node and
edge deletion.



Robustness of Barabási-Albert random graphs

Albert, Jeong and Barabasi, Nature, 406 (27) 2000.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.

© 2000 Macmillan Magazines Ltd

N=130, E=215, Red five highest degree nodes; Green their neighbors.

• Exp has 27% of green nodes, SF has 60%.

• PLRG: Connectivity extremely robust to random failure.

• PLRG: Connectivity extremely fragile to targeted attack
(removal of highest degree nodes).



Exponential vs scale-free: Robustness
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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• (Remember, bigger diameter is worse.)

• SF are extremely robust to random failure (blue squares). Remove fraction
of nodes at random, and no change in diameter.

• SF are very fragile to targeted attack (removal of highest degree nodes).



But does the ensemble of random graphs really model
engineered or biological systems?

• REDUNDANCY!!! is key principle in engineering.

• The ‘robust yet fragile’ nature of the Internet
Doyle, Alderson, Li, Low, Roughan, Shalunov, Tanaka, Willinger, PNAS 102
(4) 2005.

the resulting models are widely conjectured to be asymptotically
equivalent (e.g., see ref. 6 and references therein).

In particular, for a graph g having degree sequence D, we
define the purely graph-theoretic quantity s(g) ! "(i, j)!E(g)didj,
where E(g) is the set of edges in the graph. It is easy to check that
high s(g) requires high-degree vertices to connect to other
high-degree vertices. Normalizing against smax ! max{s(g): g !
G(D)}, we define the measure 0 ! S(g) ! 1 of the graph g as
S(g) ! s(g)!smax. Although s(g) and S(g) can be computed for any
graph and do not depend on any particular construction mech-
anism, they have a special meaning in the context of ensembles
of graphs. Specifically, S(g) has a direct interpretation as the
relative log-likelihood of a graph resulting from the generalized
random-graph construction (17); thus, all of the SF-model–
generation mechanisms generate essentially only high S graphs.
The S-metric also potentially unifies other aspects of SF graphs,
because it is closely related to betweenness, degree correlation
(6), and graph assortativity (18) and captures several notions of
self-similarity related to graph trimming, coarse graining, and
random rewiring (6).

The focus on ensemble-based methods means that the analysis in
SF models has implicitly ignored those graphs that are unlikely to
result from such constructions, in particular graphs with small S.
Thus, although power-law degree distributions are unlikely under
some traditional random graph constructions [e.g., Erdös–Renyı́
random graphs (19)], there are a multitude of other model-
generation mechanisms that give rise to power laws (20). The
SF-generating mechanisms are only one kind, but they tend to
generate only high S graphs, which leaves unexplored an enormous
diversity of low S graphs, as seen in Fig. 1. The graphs in Fig. 1 a
and b are relatively likely to result from probabilistic construction,
whereas the graphs in Fig. 1 c and d are vanishingly unlikely. The
PA-type graph shown in Fig. 1a has S(ga) ! 0.61 and is typical of
the graphs that are likely under a variety of random-generation
methods. The graph shown in Fig. 1b is the smax graph and thus by
definition has S(gb) ! 1.0. It can be thought of both as the most
likely graph and also (uniquely) as the most ‘‘perfectly’’ SF graph
with this degree sequence. Of course, the sheer enormity of the
number of different high S graphs means that any particular one

graph, even the relatively most likely, is actually unlikely in absolute
terms to be selected. The graphs in Fig. 1 c and d have the values
S(gc) ! 0.33 and S(gd) ! 0.34, respectively; furthermore, there are
relatively few graphs with S values this low, and thus any graphs
similar to these are vanishingly unlikely to arise at random (6). The
remainder of this article explains in more detail why the underlying
forces at work in the evolution of the real router-level Internet avoid
the generation of high S graphs and how this feature can be
captured in an optimization-based design framework. We also
consider what, if anything, this framework has to say about the RYF
nature of the Internet.

A Look at the Actual Internet
An obvious starting point for investigating the structure and
underlying forces at work in the Internet is to inspect detailed
router-level maps from Internet service providers (ISPs).
Abilene, the backbone for the Internet2 academic network, is
illustrated in Fig. 1 and is an ideal example for many reasons that
will be exploited throughout this analysis.** Abilene publishes
detailed hardware specifications for each router and link, so Fig.
1 is exact, not an approximation based on indirect measure-
ments. Abilene is also a state-of-the-art network with essentially
no difference between physical (i.e., layer two) and Internet-
protocol (IP) (i.e., layer three) connectivity. This simplifies the
exposition without loss of generality and also eliminates a source
of confusion in measured data from networks that use older
legacy technologies. Using regional academic networks and
commercial ISPs, we verified that all the inferences and conclu-
sions based on Abilene hold in general. Commercial ISPs do not
allow publishing such details because of proprietary consider-
ations, but router-level measurement studies (21, 22, ††) further
confirm our analysis (7, 23, 24), although this requires additional
statistical and Internet-specific expertise beyond the intended scope
of this article.

**Detailed information about the objectives, organization, and development of the
Abilene network are available from www.internet2.edu!abilene.

††SKITTER Project. Cooperative Association for Internet Data Analysis, University of Cali-
fornia San Diego Supercomputing Center (www.caida.org).

Fig. 1. Diversity among graphs having the same degree sequence D. (a) RNDnet: a network consistent with construction by PA. The two networks represent
the same graph, but the figure on the right is redrawn to emphasize the role that high-degree hubs play in overall network connectivity. (b) SFnet: a graph having
the most preferential connectivity, again drawn both as an incremental growth type of network and in a form that emphasizes the importance of high-degree
nodes. (c) BADNet: a poorly designed network with overall connectivity constructed from a chain of vertices. (d) HOTnet: a graph constructed to be a simplified
version of the Abilene network shown in Fig. 2. (e) Power-law degree sequence D for networks shown in a–d. Only di # 1 is shown.

14498 " www.pnas.org!cgi!doi!10.1073!pnas.0501426102 Doyle et al.

• Degree distribution is not the whole story.

• Also targeted attack by different metrics like betweenness (c.f.
Holme P, Kim BJ, Yoon CN, Han SK (2002) “Attack vulnerability of complex
networks”. Phys. Rev. E 65:056109)



Power Laws in the Internet?
Definition of “node” depends on level of representation
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 *



 













How to measure the structure of the Internet?
CAIDA! (Cooperative Association for Internet Data Analysis, UCSD)

• Traceroute
• BGP tables
• “Whois” data

Known issues:
• Traceroute, s-d sampling bias, makes even ER random graph appear to

have power law:
– Lakhina, Byers, Crovella, Xie INFOCOM, 2003.
– Achlioptas, Clauset, Kempe, Moore STOC, 2005.

• Hidden subgraphs:





! 
! 


! 
! 


 





Degree distribution and Network Growth Models

• Heterogeneity in real networks.

• Concentrated, Poisson Distribution in Erdös-Rényi:

– Probability to connect to k nodes is pk.

– Probability to be disconnected from remaining (n− k) is (1− p)(n−k).

– Probability for a vertex to have degree k follows a binomial distribution:

pk =
(
n
k

)
pk(1− p)n−k.

• Seek alternate mechanisms...
– Preferential Attachment: pij ∝ dj

(Probability a new nodes attaches to existing node j is proportional to
current degree dj).



An alternate view, Mandelbrot, 1953: optimization

(Information theory of the statistical structure of language)

• Goal: Optimize information conveyed for unit transmission cost

• Consider an alphabet of d characters, with n distinct words

• Order all possible words by length (A,B,C,....AA,BB,CC....)

• “Cost” of j-th word, Cj ∼ logd j

• Ave information per word: H = −
∑
pj log pj

• Ave cost per word: C =
∑
pjCj

• Minimize: d
dpj

(
C
H

)
=⇒ pj ∼ j−α



Optimization versus Preferential Attachment origin of
power laws

Mandelbrot and Simon’s heated public exchange

• A series of six letters between 1959-61 in
Information and Control.

Optimization on hold for many years, but recently
resurfaced:

• Calson and Doyle, “HOT” (PRE 1999, PRL 2000, PNAS 2002).

• Fabrikant, Koutsoupias, and Papadimitriou (ICALP 2002).

• Valverde, Ferrer Cancho, and Solé (Europhys. Lett. 2002).



FKP (Fabrikant, Koutsoupias, and Papadimitriou, 2002)

• Nodes arriving sequentially at random in a unit square.

• Upon arrival, each node connects to an already existing node
that minimizes “cost”: αdij + hj

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

oo

o

o

o

o

oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

ooo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o



Tempered Preferential Attachment

[Berger, Borgs, Chayes, D’Souza, Kleinberg, ICALP 2004.]

[Berger, Borgs, Chayes, D’Souza, Kleinberg, CPC, 2005.]

[D’Souza, Borgs, Chayes, Berger, Kleinberg, Proc Natn Acad Sci, 2007.]

• Optimization
Like FKP, start with linear tradeoffs, but consider a scale-free
metric. (Plus will result in local model.) Gives rise to:

→ PA

→ Saturation

→ Viability
(Not all children have equal fertility, not all spin-offs equally fit, etc).



Competition-Induced Preferential Attachment

Consider points arriving sequentially, uniformly at random along
the unit line:

0
2 3 1 4

Each incoming node, t, attaches to an existing node j
(where j < t), which minimizes the function:

Ftj = minj [αtjdtj + hj]

Where αtj = αρtj = αntj/dtj.

The “cost” becomes: Ftj = minj [αntj + hj]



Ftj = minj [αntj + hj]

• αtj = αρtj geometric cost proportional to local density

• Reduces to ntj — number of points in the interval between t

and j

• Minimize “transit domains” required to reach
node with strong network centrality
(i.e. AS/ISP-transit = BGP and peering).

!"

!"#$%&%'()*+*'*,-

# $%&'()*)+(',()%-.)'/,01')
/',2%13()+45,%/%6%5()
78(,'6()%1)47'(.

# 90/3()*):''10/;)
1'<=,0%/(>0:()?',2''/)
47'(

# @'=<<8)=)6=:)%-)
'A%/%60A)%1)?5(0/'(()
1'<=,0%/(>0:(B)/%,)%-)
:>8(0A=<))A%//'A,0C0,8)

!"#

!"$

!"%
!"&



The process on the line (for 1/3 < α < 1/2)
“Border Toll Optimization Problem” (BTOP)

Ftj = minj [αntj + hj]

0 1

t=1

0 2 1

t=2

F(10) = 0

F(21) = 1

F(20) = 0

0 132

t=3

0 2 3 1 4

t=4

F(31) = 1
F(32) = 1

αF(30) = 

F(40) = 3
F(42) = 1 + 2

F(43) = 1 + 

F(41) = 1

α
α

α

(A local model – connect either to closest node, or its parent.)



Mapping onto a tree

t=3

t=2

t=1

0

0

0

0 2 3 1 4

132

2 1

1

t=4

4

1

12

12 3

12 3

Pr [xt+1 ∈ Ik |π(t)] =
∫
Pr [xt+1 ∈ Ik |π(t), ~s(t)] dP (~s(t))

=
∫
sk(t)dP (~s(t)) =

1
t+ 1

,

i.e., The probability to land in the k-th interval is uniform over all
intervals.



Preferential attachment with a cutoff

0 2 13 4

Let dj(t) equal the degree of fertile node j at time t.

The number of intervals contributing to j’s fertility is
min(dj(t), A).

Probability node (t+ 1) attaches to node j is:

Pr(t+ 1→ j) = min(dj(t), A)/(t+ 1).

Standard PA: Pr(t+ 1→ j) = dj(t)/(t+ 1).



The process on degree sequence

Let N0(t) ≡ number of infertile vertices.

Let Nk(t) ≡ number of fertile vertices of degree k (for 1 ≤ k < A).

Let NA(t) ≡ number of fertile vertices of degree k ≥ A
(i.e. NA(t) =

∑∞
k=ANk(t) “the tail”)

Rigorous Proofs for

• Power law for d < A, with 1 < γ < 3.

• Exponential decay for d > A.

pk = c1k
−γ for k < A.

pk = c2 exp[−k/(A+ 1)] for k > A.



Optimization, Preferential Attachment and Network Growth

• Optimization can give rise to PA and hence to Power Laws.

• Different cost functions and geometries:

– Biological choices? (modularity versus efficiency)
– Open-source software (“systems’ motifs”)
– Economics/financial trades (trust versus value)

• Gastner and Newman work on road versus airline networks.

(See MAE 298 Feb 20, 2008 lecture).



Biological networks

protein-gene

interactions

protein-protein

interactions

PROTEOME

GENOME

METABOLISM

Bio-chemical

reactions

Citrate Cycle

Cellular networks:



Protein interactions: Yeast two-hybrid method

(Courtesy of Eivind Almaas)



PIN for Drosophila
Giot, et al, Science 2003



GRNs (Courtesy of Julin Maloof)

How can microarrays help us build GRNs?

• Co-expression or Relevance Network

– measure gene expression across multiple samples

• after perturbation

• time course

• different individuals

• mutants

– Create correlation matrix

– Edges connect genes with correlation > threshold

Good Review: Markowetz, F. & Spang, R. Inferring cellular networks--a review. BMC Bioinformatics 8 Suppl 6, S5 (2007).

(Courtesy of Julin Maloof)



GRNs
co-expression network

EDCBA

.1

A

.7.3.3E

.6.7.7D

.2.8C

.9B

A

CB

D E

(Courtesy of Julin Maloof)


