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Why these papers {a OR we}re worth your time

I Infrastructure networks’ design emerges from simple
optimization

I Flows on networks: network structure/function determines
user preferences which in turn have nontrivial effects on
network function

I (Cool pictures)



big questions



What’s special about spatial networks?

‘Networks’: all things that look like G = (V ,E )

I ‘Spatial’ networks embedded in a network-independent ‘space’
governing V and E

I P(i , j) = f ((xi , yi , zi ), (xj , yj , zj), . . .)

I Planar graphs: edges only intersect at nodes

I Usually kmax is constrained



Technological spatial network examples

2

FIG. 1: (Colour online) European gas pipeline network. We show the transmission network (blue pipelines) overlaid with the
distribution network (brown pipelines). Link thickness is proportional to pipeline diameter. We projected the data with the
Lambert Azimuthal Equal Area projection [16].

TABLE I: Basic network statistics for the transmission and
complete European gas pipeline networks. The complete net-
work is the union of the transmission and distribution net-
works.

Statistics Gas Network Gas Network

(transmission) (complete network)

Number of nodes 2207 24010

Number of edges 2696 25554

Total length [km] 119961 436289

II. TRANS-EUROPEAN GAS NETWORKS

We have extracted the European gas pipeline net-
work from the Platts Natural Gas geospatial data [17].
The dataset covers all European countries (including non
EU countries such as Norway and Switzerland), North
Africa (main pipelines from Morocco and Tunisia), East-
ern Europe (Belarus, Ukraine, Lithuania, Latvia, Esto-

nia, Turkey) and Western Russia (see Fig. 1).
Similarly to electrical power grids, gas pipeline net-

works have two layers: transmission and distribution.
The transmission network transports natural gas over
long distances, whereas pipelines at distribution level
cover urban areas and deliver gas directly to end cus-
tomers. The gas pipeline transmission network is the
connected component of the complete natural gas net-
work, which is composed of all the important pipelines
with diameter D ≥ 15 inches, plus all other pipelines in-
terconnecting major branches. We treated the resulting
network as undirected due to lack of information on the
direction of flows. However, network links are weighted
according to pipeline diameter and length.

The European gas pipeline infrastructure is a
continent-wide sparse network which crosses 38 coun-
tries, has about 2.4 × 104 nodes (compressor stations,
city gate stations, liquefied natural gas (LNG) termi-
nals and storage facilities) connected by approximately
2.5 × 104 pipelines (including urban pipelines), span-
ning more than 4.3 × 105 km (see Table I). The trans-

Carvalho et al: arXiv:0903.0195v1 [physics.soc-ph]
images.encarta.msn.com
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Supplemental School Day Service  

On weekdays many area middle and high school students use Metro to get to and from school.  To avoid overcrowding 
of buses, Metro provides additional weekday service.  Routes providing supplemental weekday service are numbered 
in the 90s.  These routes operate on days that the Madison Metropolitan School District classes are in session.

Far West
92

 Routes and Schedules are subject to change. 

Northeast
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Southeast
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Near West
90

Weekend and
Holiday Service

October 5,  2008

Routes, fares and 
schedules are
subject to
change.

  Maps are printed in limited quanty. 
Please hold on to this copy!
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UW Campus ServiceSupplemental School Day Service

UW Campus Route 
• Operates frequent all-day service during academic year 
• Operates limited all-day service during summer, winter 

and spring breaks
• Operates via Union South after 6 PM
• Refer to Ride Guide for Route 80 Service Calendar

UW SAFEride Tripp-Johnson
UW SAFEride Breese-Broom

• Operate frequent evening service during academic year
• Do not operate during summer, winter and spring breaks
• Refer to Ride Guide for SAFEride Service Calendar 

UW Eagle Heights Express
• Operates PM Peak Service during academic year and during

summer, winter and spring breaks. 
• Refer to Ride Guide for Route 84 Service Calendar

UW South Campus Circulator
• Operates frequent service until 6 PM during academic year 
• Operates limited service until 5 PM during summer, winter 

and spring breaks
• Refer to Ride Guide for Route 85 Service Calendar

UW Campus service on Routes 80, 81, 82, 84 & 85 is free to all riders. Schedules are available on the bus, at any UW Transportation Services office and at www.mymetrobus.com
80 81

82
8584

Welcome Aboard!    
 Metro’s Transfer Point System provides connections
in all directions at the North, South, East, West and 
Middleton Transfer Points for convenient service to 
many destinations throughout the Madison area. 
    
 Be sure to look at both the Weekday and Supplemental 
School Day Service maps for weekday travel, and 
the Weekend and Holiday map for travel on those days. 
Locate the route(s) closest to your origin and destination 
point. Now that you’ve determined which route(s) 
you need, refer to the appropriate schedule(s) in the 
Ride Guide.

For Information Call Customer Service Center
• Weekdays: 6:15 AM–6:00 PM  
• Saturdays: 8:00 AM–4:30 PM
• Sundays & Holidays: 12:30 PM–4:30 PM

  608-266-4466
 TTY/Textnet 1-866-704-2316  
mymetrobus.com

cityofmadison.com/metro



Biological spatial network examples

3dscience.com

davidlnelson.md/Cazadero/CazImages

this in mind, we characterized developing networks
formed by Phanerochaete velutina, a representative foraging
woodland fungus, to determine how these networks
resolve the competing demands of exploration, exploita-
tion, transport efficiency and robustness.

2. MATERIAL AND METHODS
Preparation of the experimental microcosms followed Wells

et al. (1997). Briefly, autoclaved beech (Fagus sylvatica)

blocks (2!2!1 cm) were inoculated with P. velutina and

placed onto compressed, non-sterile woodland soil in 24!
24 cm trays. In three replicates, a second woodblock

(additional resource) was placed 8 cm from the initial

inoculum, with the three control replicates, containing a

plastic cap at an equivalent location. The microcosms were

kept in the dark at approximately 168C and 100% relative

humidity. The growing mycelia were photographed after 9,

18, 25, 31 and 39 days, until they had reached the margins of

the trays.

Branch or fusions points, and cords, were manually

ascribed to nodes and links, respectively, using a custom

MATLAB (The MathWorks, Nantick, MA) interface (avail-

able on request from the authors). Link diameters were

automatically determined from the imaged cord intensities

using an empirically determined calibration. The cords were

not sufficiently well resolved to make direct measurement of

their diameter from the digitized images. However, the

reflected intensity, averaged over a small user-defined kernel

at either end of the cord, correlated well with microscope-

based measurements of cord thickness in 10 replicate

microcosms (linear regression, r 2Z0.77, d.f.Z195,

p!0.0001). This calibration was therefore used to estimate

cord thickness from sampled cord intensities. The inoculum

and resource units were represented as single nodes, as the

internal mycelial organization was not visible. Shortest paths

were calculated using Johnson’s shortest path algorithm

implemented with the RBGL package (Carey et al. 2005) for

R v. 2.4.1 (R Development Core Team 2006). Spline fits

were calculated using Friedman’s smoother (Friedman

1984) implemented in R. All statistical analyses were

implemented in R.

3. RESULTS
(a) Network development

Colonies of P. velutina were grown on compressed soil
from a colonized woodblock inoculum (I) in the presence
and absence of additional wood resources, or ‘baits’ (B),
designed to simulate the sporadic capture of wood
fragments during mycelial foraging or stochastic input
from the forest canopy (figure 1a–c). The mycelium
spread radially across the soil surface, eventually reaching
the edge of the microcosm within five to six weeks

Figure 1. Mycelial network structure. (a–c) Corded mycelium of P. velutina growing from colonized woodblock inoculum (I)
over a compressed soil microcosm (22.5!22.5 cm) for 39 days. Themycelium has contacted and colonized a second woodblock
(B). (d ) Scanning electron micrograph of the fine structure of a cord of P. velutina, showing that cords are composed of a bundle
of many parallel fine hyphae. (e) Model of a cord as a bundle of identical hyphae, with cross-sectional area a and length l. The
volume of a model cord is la and the predicted transport resistance is laK1. ( f–h) Models of a developing mycelial network at 25,
31 and 39 days. Links are pseudo-colour coded by log10(a) on a rainbow scale with red representing thick cords and blue
representing thin cords. The positions of woodblocks are highlighted by white squares.
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What did I miss?

I Social networks: the farther away we are, the less likely we
connect

I Ad-hoc spatial networks: wireless, dynamic traffic networks
(as in Zac’s model)

I Non-‘spatial’ ‘spatial’ networks: hidden metric spaces



What’s special about technological networks?

I Intelligent design!
I Design: technological
I Selection: biological, social (and selection criteria need not

have anything to do with a particular network representation)
I Chance: RG models

I In particular: usually satisfy one (or few) simple goals:
Efficient transportation of something (water, gas, electricity,
information, people) from A to B

I Infer connections between structure and function



Aside

‘Designed’ networks: people have been thinking about
transportation and distribution networks for a long time (and
there’s big money in getting it right)

The challenge for the ‘complex networks’ community in this domain
is to uncover something new, or to ‘generalize’ existing research, or
to identify what’s unique or universal in this class of networks

Classic text: Network Flows: Theory, Algorithms and
Applications, by Ahuja, Magnanti, Orlin



Spatial Distribution Network Design Problem

SDNDP

Given a set of things that ‘want’ to move between a set
of spatial points V , what’s the cheapest way to get them there?

Gastner & Newman (2006) wants us to think about two specific
parts of this question as applied to transportation networks:

I How do we determine the points V anyway?

I What do we mean by ‘cheapest’? Does how we measure cost
change the optimal structure?



Optimal facility location
I Assume non-uniform population density ρ(r)
I Distribute p facilities to {r1 . . . rp} to minimize:

f (r1 . . . rp) =

∫

A
ρ(r) min

i∈{1...p}
|r − ri |d2r

I Voronoi cell at ri : set of points closer to ri than to any other
rj , j 6= i

  

Computational complexity

from Gastner slides.pdf



Optimal facility location

I SOLUTION: Optimal density of facilities increases sublinearly
with population density:

D(r) =
p∫

[ρ(r)]2/3d2r
[ρ(r)]2/3

I Balance between
I D(r) ∝ [ρ(r)]0 = constant: Sparse and dense get same
I D(r) ∝ [ρ(r)]1: Dense get lots, sparse get very few



(math)

I Minimize average distance to nearest facility (s(r) is area of
r’s Voronoi cell):

f = g

∫

A
ρ(r)[s(r)]1/2d2r

I Subject to p-facility constraint :

∫

A
[s(r)]−1d2r = p

I Lagrange multiplier optimization:

δ

δs(r)

[
g

∫

A
ρ(r)[s(r)]1/2d2r − α

(
p −

∫

A
[s(r)]−1d2r

)]
= 0

⇒ s(r) = [2α/gρ(r)]2/3, [2α/g ]2/3 =

∫
A[ρ(r)]2/3d2r

p



Optimal facility location

Simulated annealing solution

2

FIG. 1: Facility locations determined by simulated anneal-
ing and the corresponding Voronoi tessellation for p = 5000
facilities located in the lower 48 United States, based on pop-
ulation data from the US Census for the year 2000.

that the integral of [s(r)]−1 over Vi is
∫

Vi

[s(r)]−1 d2r = [s(ri)]−1

∫

Vi

d2r = 1. (3)

Summing over all Vi, we can then express the constraint
on the number of facilities in the form

∫

A

[s(r)]−1 d2r = p. (4)

Subject to this constraint, optimization of the mean
distance f above gives

δ

δs(r)

[
g

∫

A

ρ(r)[s(r)]1/2d2r−α

(
p−

∫

A

[s(r)]−1d2r

)]
= 0,

(5)
where α is a Lagrange multiplier. Performing the func-
tional derivatives and rearranging for s(r), we find s(r) =
[2α/gρ(r)]2/3. The Lagrange multiplier can be evaluated
by substituting into Eq. (4) and we arrive at the result

D(r) =
1

s(r)
= p

[ρ(r)]2/3

∫
[ρ(r)]2/3 d2r

, (6)

where we have introduced the notation D(r) = [s(r)]−1

for the density of the facilities.
Thus, if facilities are distributed optimally for the given

population distribution, their density increases with pop-
ulation density but does so slower than linearly, namely
as a power law with exponent 2

3 [27]. This density places
most facilities in the densely populated areas where
most people live while still providing reasonable service
to those in sparsely populated areas where a strictly
population-proportional allocation might leave inhabi-
tants with little or nothing.

The derivation above makes two approximations: it
assumes that the geometric factor g is the same for all

FIG. 2: Facility density D from Fig. 1 versus population den-
sity ρ on a log-log plot. A least-squares linear fit to the data
gives a slope of 0.663 ± 0.002 (solid line).

Voronoi cells and that s(r) is a continuous function. Nei-
ther assumption is strictly true, but we expect them to
be approximately valid if ρ varies little over the typi-
cal size of a Voronoi cell. As a test of these assump-
tions, we have optimized numerically the distribution of
p = 5000 facilities over the lower 48 states of the United
States (Fig. 1) using population data from the most re-
cent US Census [11], which counts the number of resi-
dents within more than 8 million blocks across the study
region. To create a continuous density function ρ, we
convolved these data with a normalized Gaussian dis-
tribution of width 20 km. The facility locations were
then determined by optimizing the full p-median objec-
tive function (1) by simulated annealing [12].

The relation D ∝ ρ2/3 can be tested as follows. First,
we determine the Voronoi cell around each facility. Then
we calculate D(r) as the inverse of the area of the cor-
responding cell and ρ as the number of people living in
the cell divided by its area. Figure 2 shows a scatter plot
of the resulting data on doubly-logarithmic scales. If the
anticipated 2

3 -power relation holds, we expect the data to
fall along a line of slope 2

3 . And indeed a least-squares fit
(solid line in the figure) yields a slope 0.663(2), in good
agreement with the theoretical prediction.

Some statistical concerns might be raised about this
method. First, we used the Voronoi cell area to calculate
both D and ρ, so the measurements of x- and y-values in
the plot are not independent, and one might argue that
a positive slope could thus be a result of artificial corre-
lations between the values rather than a real result [13].
Second, it is known that estimating the exponent of a
power law such as Eq. (6) from a log-log plot can in-
troduce systematic biases [14]. In the next section, we
introduce an entirely different test of Eq. (6) that, in ad-
dition to being of interest in its own right, suffers from
neither of these problems.



Aside on simulated annealing

Kirkpatrick et al, “Optimization by Simulated Annealing”. Science
1983

I Large search space with local minima

I ‘Steepest descent’ methods get stuck in local minima

I Solution: allow ‘energetically unfavorable’ moves provided a
‘temperature’ is high enough

I Cooling schedule and ‘neighbor selection’



Population-equalizing cartograms

I Population density within each cell equalized (by diffusion
process)

I Verification of 2/3 relation: minimizes variation of cell area

4

FIG. 3: Near-optimal facility location on (a) a cartogram equalizing the population density ρ and (b) a cartogram equalizing ρ2/3.
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FIG. 4: The coefficient of variation (i.e., the ratio of the stan-
dard deviation to the mean) for Voronoi cell areas as they
appear on a cartogram, against the exponent x of the under-
lying density ρx.

We assume this quantity to be proportional to the cost
of maintaining the network. Clearly this assumption is
only approximately correct; networked systems in the
real world will have many factors affecting their mainte-
nance costs that are not accounted for here. It is however
the obvious first assumption to make and, as we will see,
can provide us with good insight about network struc-
ture.

The typical cost of shipping a commodity or traveling
through the network depends on the distances lij as well
as the amount of traffic wij (e.g., weight of cargo, number
of passengers, etc.) that flows between vertices i and j.
In a spirit similar to our assumption about maintenance
costs, we assume that the total travel cost is given by

Z =
∑

i<j

wij lij . (8)

We assume that wij is proportional to the product of

populations in the Voronoi cells Vi and Vj around i and j,
so that

wij =
∫

Vi

ρ(r) d2r

∫

Vj

ρ(r′) d2r′ (9)

in appropriate units. And the total cost of running the
network is proportional to the sum T + γZ with γ ≥ 0 a
constant that measures the relative importance of the two
terms. Then the optimal network is the one minimizing
this sum [25, 26].

Using again the conterminous United States as an ex-
ample, we have first determined the optimal placement
of p = 200 facilities which we then try to connect to-
gether optimally. The number of edges in the network
depends on the parameter γ. If γ → 0, the cost of
travel Z vanishes and the optimal network is the one
that simply minimizes the total length of edges. That
is, it is the minimum spanning tree, with exactly p − 1
edges between the p vertices. Conversely, if γ →∞ then
Z dominates the optimization, regardless of the cost T
of maintaining the network, so that the optimum is a
fully connected network or clique with all 1

2p(p− 1) pos-
sible edges present. For intermediate values of γ, finding
the optimal network is a non-trivial combinatorial opti-
mization problem, for which we can derive good, though
usually not perfect, solutions using again the method of
simulated annealing [12].

There is, however, another complicating factor. In
Eq. (8) we assumed that travel costs are proportional to
geometric distances between vertices, which is a plausible
starting point. In a road network, for example, the quick-
est and cheapest route is usually not very different from
the shortest route measured in kilometers. But in other
networks travel costs can also depend on the number of
legs in a journey. In an airline network, for instance, pas-
sengers often spend a lot of time waiting for connecting
flights, so that they care both about the total distance
they travel and the number of stopovers they have to
make. Similarly, the total time required for an Internet
packet to reach its destination depends on two factors,



Aside on cartogram applications
2004 U.S. Presidential Election 2008 U.S. Presidential Election

all from www-personal.umich.edu/̃mejn/election



Optimal networks of facilities

I Now that we have a way to determine the ‘optimal’ set of
facilities V , what is the optimal way to wire them?

I Use minimization of ‘competing objectives’ as in Fabrikant,
Koutsoupias, Papadimitriou (2002) or D’Souza et al (2007)



Optimal networks of facilities

I lij is the shortest geographic distance between i and j along
edges (lij =∞ if no path)

I Total length of edges or network ‘maintenance cost’:

T =
∑

i<j

Aij lij

I ‘Travel cost’:
Z =

∑

i<j

wij lij

where

wij =

∫

Vi

ρ(r)d2r

∫

Vj

ρ(r′)d2r ′



Optimal networks of facilities

I Minimize ‘total cost’ T + γZ for parameter γ ≥ 0

I γ = .0002, .002, .02, .2
(a) (b)

(c) (d)

!

!

!

!

= 0.0002

= 0.02

= 0.002

= 0.2

Figure 5.4: Near-optimal networks in terms of the total cost C with n = 200 vertices for
different values of γ.

of γ. The result, plotted in Fig. 5.5, shows that T is a monotonically increasing

and Z a monotonically decreasing function. Roughly speaking, two regimes can be

distinguished. For small γ, T stays almost constant near its minimum value, whereas

Z decreases rapidly. For large γ, the roles are reversed: Z does no longer decrease

much, but T grows quickly.

The network length T is the product of two factors: the number of edges m and

the average edge length l̄. It is instructive to analyze how these two factors contribute

separately to the increase in T in Fig. 5.5. In the upper panel of Fig. 5.6 we plot

the average degree k̄ = 2m/n ∝ m as well as the maximum degree kmax against γ.

Both increase only very slowly for small γ, but more quickly for larger γ. The lower

95



How do we measure ‘distance’?

I Geographic distance (km) vs. graph distance (hopcount)

I Rescale edge length: l̃ij = (1− δ)lij + δ for 0 ≤ δ ≤ 1

I Modify travel cost term: Z =
∑

i<j wij l̃ij

I (actually that l̃ij is the shortest rescaled path between i and j)

  

Different routing strategies



Optimal networks of facilities

5

FIG. 5: Optimal networks for the population distribution of the United States with p = 200 vertices for different values of δ
and with γ = 10−14.

the propagation delay proportional to the physical dis-
tance between vertices (computers and routers) and the
store and forward delays introduced by the routers, which
grow with the number of intermediate vertices.

To account for such situations, we generalize our def-
inition of the length of an edge and assign to each edge
an effective length

l̃ij = (1− δ)lij + δ (10)

with 0 ≤ δ ≤ 1. The parameter δ determines the user’s
preference for measuring distance in terms of kilometers
or legs. Now we define the effective distance between
two (not necessarily adjacent) vertices to be the sum of
the effective lengths of all edges along a path between
them, minimized over all paths. The travel cost is then
proportional to the sum of all effective path lengths

Z =
∑

i<j

wij l̃ij , (11)

and the optimal network for given γ and δ is again the one
that minimizes the total cost T + γZ. (Since the second
term in Eq. (10) is dimensionless, we normalize the length
appearing in the first term by setting the average “crow
flies” distance between a vertex and its nearest neighbor
equal to one.)

In Fig. 5 we show the results of the application of this
process to the lower 48 United States. When δ = 0 pas-

sengers (or cargo shippers) care only about total kilome-
ters traveled and the optimal network strongly resembles
a network of roads, such as the US interstate network.
As δ increases the number of legs in a journey starts
playing a more important role and the approximate sym-
metry between the vertices is broken as the network be-
gins to form hubs. Around δ = 0.5 we see networks
emerging that constitute a compromise between the con-
venience of direct local connections and the efficiency of
hubs, while by δ = 0.8 the network is dominated by a few
large hubs in Philadelphia, Columbus, Chicago, Kansas
City, and Atlanta that handle the bulk of the traffic. On
the highly populated Californian coast, two smaller hubs
around San Francisco and Los Angeles are visible. In
the extreme case δ = 1, where the user cares only about
number of legs and not about distance at all, the network
is dominated by a single central hub in Cincinnati, with
a few smaller local hubs in other locations such as Los
Angeles.

V. CONCLUSIONS

We have in this paper studied the problem of optimal
facility location, also called the p-median problem, which
consists of choosing positions for p facilities in geographic
space such that the mean distance between a member



Optimal networks of facilities

What’s missing (and/or what’s wrong)?



Optimal networks of facilities

What’s missing (and/or what’s wrong)?

I Pictures and analysis

I Scaling of γ: want O(T ) = O(γZ )?

I Congestion effects: depend on δ

I Minimize whose costs: operators, users, system?

I How realistic is cost minimization?
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Optimal networks of facilities

What’s missing (and/or what’s wrong)?

I Pictures and analysis

I Scaling of γ: want O(T ) = O(γZ )?

I Congestion effects: depend on δ?

I Minimize whose costs: operators, users, system?

I How realistic is cost minimization?



PoA in transportation nets (Youn et al 2008)

How do we allocate flows fij on a (fixed) network?

I Social optimum: cheapest to the system

min
∑

u∈users
Cu(fij)

I Nash equilibrium: strategy which can’t be improved
unilaterally. The u-th user chooses a path taking fij as fixed:

min Cu(fij)

I Other users’ decisions affect my Cu



Price of anarchy

Let lij be the ‘delay’ along link ij , fij the flow.
2

FIG. 1: (color) Illustration of the price of anarchy. (a) Sup-
pose F = 10 users travel per unit time from s to t. (b) The
socially optimal flow sends five users along each link, thus the
total cost is C = 75. (c) In the Nash equilibrium with fA = 10
and fB = 0, C = 100 is higher than in (b).

lij(fij) are strictly increasing (as in most realistic cases)
and the flows fij are continuous, one can prove that there
is always exactly one Nash equilibrium [6].

Although differences between Nash equilibria and so-
cial optima occur frequently in social science, only few
papers have studied the difference between optimal and
actual system performance in real transportation net-
works [4]. To shed light on this issue, we have ana-
lyzed Boston’s road network shown in Fig. 2(a). The
246 directed links in our network are segments of prin-
cipal roads, and their intersections form 88 nodes. De-
lays are assumed to follow the Bureau of Public Roads
(BPR) function widely used in civil engineering, lij =
dij

vij

[
1 + α

(
fij

pij

)β]
. Here dij is the distance of the link

between i and j, vij the speed limit (35 mph on all links,
for simplicity), fij the flow, and pij the capacity of the
road segment. The parameters α and β have been fitted
to empirical data [8] as α = 0.2 and β = 10, i.e., the
delays increase very steeply for large traffic volumes. Ca-
pacity is defined as the traffic volume at “level of service
E” which is approximately 2000 vehicles per hour multi-
plied by the number of lanes [9]. We used Google Maps
to identify the principal roads, measure the distances dij ,
and count the number of lanes for each direction.

Next we have calculated the flows fij for various to-
tal traffic volumes F from Harvard Square to Boston
Common. The socially optimal flows fSO

ij are deter-
mined by minimizing the cost to society per unit time
C =

∑
link(i,j) lij(fij)fij . This optimization problem,

satisfying flow conservation at each intersection, can be
solved with standard convex minimum cost flow algo-
rithms [10]. For the Nash equilibrium, we can use the
fact that the equilibrium flows fNE

ij minimize the objec-

tive function [6] C̃ =
∑

link(i,j)

∫ fij

0 lij(f ′)df ′. The price

of anarchy (PoA) is defined as the ratio of the total cost
of the Nash equilibrium to the total cost of the social op-
timum [11] indicating the inefficiency of decentralization;
for example in Fig. 1, PoA = 100/75 = 4/3, or in general

PoA =

∑
lij(fNE

ij ) · fNE
ij∑

lij(fSO
ij ) · fSO

ij

. (1)

4/3 is in fact the upper bound for the PoA in networks
with affine delays, i.e., β = 1 [6, 12]. For larger β, the
theoretical maximum is higher, but here we are more in-
terested in typical than in worst-case network topologies.
For β = 10, Fig. 3(a) shows the PoA versus the total traf-
fic volume F for Boston’s roads. Except for very small
F , the Nash equilibrium cost is higher than the social
optimum so that PoA > 1. The worst ratio occurs for a
traffic volume of 10, 000 vehicles per hour – a quite real-
istic flow, see [13] – where PoA ≈ 1.30, i.e., individuals
waste 30% of their travel time for not being coordinated.

To what extent are properties of the PoA observed
in Boston’s road network characteristic of networks with
flow-dependent costs? Among road networks, the results
appear to be typical as suggested by an analysis of the
road networks of London and New York in Fig. 2. Lon-
don’s network consists of 82 intersections and 217 links
marked as principal roads by Google Maps. We find that
the PoA can increase up to 24% for trips between the Bor-
ough and the Farringdon underground stations (Fig. 3(a)
inset). Similar results also hold for New York, consisting
of 125 intersections and 319 streets. The inset of Fig. 3(a)
shows that the PoA can be as high as 28% when 12,000
vehicles per hour travel from Washington Market Park
to Queens Midtown Tunnel. The results remain qualita-
tively similar for different sets of sources and destinations
suggesting that a high PoA can generally become a seri-
ous problem.

To gain further theoretical insight, we also con-
structed four ensembles of bidirectional model networks
with distinct underlying structures [14]: a simple one-
dimensional lattice with connections up to the third-
nearest neighbors and periodic boundary conditions,
Erdős-Rényi random graphs with links between ran-
domly drawn pairs of nodes, small-world networks with
a rewiring probability 0.1, and Barabási-Albert networks
with broad degree distributions. All the networks con-
tain 100 nodes and have an average degree of 6. Ev-
ery link between nodes i and j has a delay of the form
lij = aijfij + bij , where aij = aji is a random integer
equal to 1, 2, or 3, and bij = bji between 1 and 100.
This affine cost function captures essential properties of
links in important physical networks. In electric circuits,
for example, the flow fij is an electric current and the
delay lij can be interpreted as the voltage difference be-
tween i and j. An affine current-voltage characteristic
occurs in circuits with a combination of Ohmic resistors
(resistances aij) and Zener diodes (breakdown voltages

f SO
A = f SO

B = 5

CSO = 75

f NE
A = 10, f NE

B = 0

CNE = 100



Price of anarchy

Price of anarchy (PoA) measures the ‘inefficiency of
decentralization’:

PoA =

∑
lij(f

NE
ij ) · f NE

ij∑
lij(f SO

ij ) · f SO
ij

Previous example: PoA = 4/3
This is system-view; some users are worse off than others in SO



Braess’s Paradox

In a user/decentralized optimum, adding additional links may
actually make everybody worse off.
Anecdotal examples (yep, from wikipedia.org/wiki/Braess’s paradox)

I Seoul, South Korea: a speeding-up in traffic around the city
was seen when a motorway was removed

I Stuttgart, Germany, 1969: after investments into the road
network, the traffic situation did not improve until a section of
newly-built road was closed

I New York City, 1990: closing of 42nd street in New York City
reduced the amount of congestion in the area.



Braess’s Paradox

Consider a
simple 4-node
network.



Braess’s Paradox

Consider a simple
4-node network.

I 4000 drivers want
to go from start to
end

I Two links depend
on flow (T )



Braess’s Paradox

Time needed to
send A drivers
along A-route:

lA =
A

100
+ 45



Braess’s Paradox

Time needed to
send B drivers
along B-route:

lB = 45 +
B

100



Braess’s Paradox

Nash
equilibrium
(user-optimal)
occurs when
lA = lB :

A = B = 2000

lA = lB = 65min



Braess’s Paradox

Now add a
‘free’ shortcut.
This can only
improve things,
right?



Braess’s Paradox

Consider the
‘worst-case’ on
flow-dependent
links.
Always cheaper
than fixed links.



Braess’s Paradox

Claim:
everyone
rationally
chooses this
route.

lS =
4000

100
+

4000

100

= 80 min



Braess’s Paradox

Why? Could I
unilaterally do
better?



Braess’s Paradox

This way costs
more:

lA =
4000

100
+ 45

= 85 min > 80



Braess’s Paradox

And so does
this:

lB =
4000

100
+ 45

= 85 min > 80



Braess’s Paradox

So what? Is this realistic?

I Sensitive to flows and cost functions

Link improves overall flow
N = 2000

Link doesn’t matter
N = 9000



Flows in real-world road networks

I dij distance of link, vij = 35mph, fij flow, pij capacity

I Delays: lij =
dij

vij

[
1 + α

(
fij
pij

)β]

I α = 0.2, β = 10 large superlinearity
I Optimal flows:

I Social optimal flows f SO
ij minimize

∑

link(i,j)

lij(fij)fij

I Nash equilibrium flows f NE
ij minimize

∑

link(i,j)

∫ fij

0

lij(f
′)df ′



PoA in real-world road networks

I Send flow between one S-D pair

I PoA depends on total flow volume:

I Qualitatively similar results for different source, destination
pairs

I (N,E ): Boston: (88, 246) London: (82, 217) NYC: (125, 319)



Braess’s Paradox: Boston
3

FIG. 2: (color) Networks of principal roads (both solid and dotted lines; the thickness represents the number of lanes). (a)
Boston-Cambridge area, (b) London, UK, and (c) New York City. The color of each link indicates the additional travel time
needed in the Nash equilibrium if that link is cut (blue: no change, red: more than 60 seconds additional delay). Black dotted
lines denote links whose removal reduces the travel time, i.e., allowing drivers to use these streets in fact creates additional
congestion. This counter-intuitive phenomenon is called ”Braess’s paradox.”

bij). Further examples with affine cost functions include
mechanical, hydraulic, and thermal networks [15].

For each model network, we go through every pair
of nodes to calculate the PoA for various total flows
F . Then the results are averaged over 50 networks to
find the mean 〈PoA(F )〉 for each ensemble as plotted in
Fig. 3(b). After averaging over many pairs, there are
no longer multiple local maxima as in Fig. 3(a). In-
stead, we find unimodal functions for all ensembles with a
steep increase for small F and a long tail for large flows.
The qualitative behavior can be understood as follows.
The social optimum minimizes C =

∑
(aijfij

2 + bijfij)
whereas the flow in the Nash equilibrium minimizes
C̃ =

∑
(1
2aijfij

2 + bijfij). In the limit F → 0, both ob-
jective functions become identical and, therefore, 〈PoA〉
→ 1. For F → ∞, the quadratic terms in the sums
dominate, hence C/C̃ → 2, i.e., both objective functions
are minimized by the same asymptotic flow pattern fij/F
and 〈PoA〉 again approaches 1. The maximum 〈PoA〉 oc-
curs roughly where the quadratic and linear terms in the
objective functions are comparable, i.e., aijfij ≈ bij for
paths with positive flow. Ignoring correlations between
aij and fij , we have 〈fij〉 ≈ 〈bij〉/〈aij〉. Since F = c〈fij〉
where c is a factor bigger than but of the order of 1, we es-
timate the maximum 〈PoA〉 to be at Fmax ≈ c〈bij〉/〈aij〉.
In our example, 〈aij〉 = 2 and 〈bij〉 = 50.5, so we pre-
dict Fmax to be bigger than but of the order of 25. Nu-
merically, we find the maxima for our four ensembles to
be between 30 and 60 in good agreement with our esti-
mate. Barabási-Albert networks tend to have the lowest
〈PoA(F )〉 and small-world networks the highest, but the
statistical dependence between 〈PoA〉 and F is strikingly
similar among all ensembles.

Knowing the PoA is important, but it is even more
valuable to discover a proper method to reduce it. In a
road network, one could charge drivers toll fees to stim-
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FIG. 3: (color) The price of anarchy (PoA), as a function
of the traffic volume F . (a) In Boston’s road network for
journeys from Harvard Square to Boston Common with BPR
delays with α = 0.2, β = 10. Inset: the PoA in London from
Borough to Farringdon, and in New York from Washington
Market Park to Queens Midtown Tunnel. (b) The PoA in
ensembles of model networks with affine delays. All networks
have 100 nodes and 300 undirected links. The error bars
represent one standard deviation in the PoA-distribution. In-
set: the PoA in regular lattices with multiple random sources
and sinks (“multi-commodity flows”) averaged over 100 to 400
networks. Each pair contributes equally to F .

ulate a more cooperative behavior, but that strategy has
problems of its own. For example, one could charge
a fee for using each link equal to the “marginal cost”
fij · lij

′(fij) so that the new Nash flow becomes equal
to the social optimum. Unfortunately, if collected taxes
are not returned to the users, such marginal cost taxes
do not improve the cost of the Nash equilibrium in the

3

FIG. 2: (color) Networks of principal roads (both solid and dotted lines; the thickness represents the number of lanes). (a)
Boston-Cambridge area, (b) London, UK, and (c) New York City. The color of each link indicates the additional travel time
needed in the Nash equilibrium if that link is cut (blue: no change, red: more than 60 seconds additional delay). Black dotted
lines denote links whose removal reduces the travel time, i.e., allowing drivers to use these streets in fact creates additional
congestion. This counter-intuitive phenomenon is called ”Braess’s paradox.”

bij). Further examples with affine cost functions include
mechanical, hydraulic, and thermal networks [15].

For each model network, we go through every pair
of nodes to calculate the PoA for various total flows
F . Then the results are averaged over 50 networks to
find the mean 〈PoA(F )〉 for each ensemble as plotted in
Fig. 3(b). After averaging over many pairs, there are
no longer multiple local maxima as in Fig. 3(a). In-
stead, we find unimodal functions for all ensembles with a
steep increase for small F and a long tail for large flows.
The qualitative behavior can be understood as follows.
The social optimum minimizes C =

∑
(aijfij

2 + bijfij)
whereas the flow in the Nash equilibrium minimizes
C̃ =

∑
(1
2aijfij

2 + bijfij). In the limit F → 0, both ob-
jective functions become identical and, therefore, 〈PoA〉
→ 1. For F → ∞, the quadratic terms in the sums
dominate, hence C/C̃ → 2, i.e., both objective functions
are minimized by the same asymptotic flow pattern fij/F
and 〈PoA〉 again approaches 1. The maximum 〈PoA〉 oc-
curs roughly where the quadratic and linear terms in the
objective functions are comparable, i.e., aijfij ≈ bij for
paths with positive flow. Ignoring correlations between
aij and fij , we have 〈fij〉 ≈ 〈bij〉/〈aij〉. Since F = c〈fij〉
where c is a factor bigger than but of the order of 1, we es-
timate the maximum 〈PoA〉 to be at Fmax ≈ c〈bij〉/〈aij〉.
In our example, 〈aij〉 = 2 and 〈bij〉 = 50.5, so we pre-
dict Fmax to be bigger than but of the order of 25. Nu-
merically, we find the maxima for our four ensembles to
be between 30 and 60 in good agreement with our esti-
mate. Barabási-Albert networks tend to have the lowest
〈PoA(F )〉 and small-world networks the highest, but the
statistical dependence between 〈PoA〉 and F is strikingly
similar among all ensembles.

Knowing the PoA is important, but it is even more
valuable to discover a proper method to reduce it. In a
road network, one could charge drivers toll fees to stim-
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FIG. 3: (color) The price of anarchy (PoA), as a function
of the traffic volume F . (a) In Boston’s road network for
journeys from Harvard Square to Boston Common with BPR
delays with α = 0.2, β = 10. Inset: the PoA in London from
Borough to Farringdon, and in New York from Washington
Market Park to Queens Midtown Tunnel. (b) The PoA in
ensembles of model networks with affine delays. All networks
have 100 nodes and 300 undirected links. The error bars
represent one standard deviation in the PoA-distribution. In-
set: the PoA in regular lattices with multiple random sources
and sinks (“multi-commodity flows”) averaged over 100 to 400
networks. Each pair contributes equally to F .

ulate a more cooperative behavior, but that strategy has
problems of its own. For example, one could charge
a fee for using each link equal to the “marginal cost”
fij · lij

′(fij) so that the new Nash flow becomes equal
to the social optimum. Unfortunately, if collected taxes
are not returned to the users, such marginal cost taxes
do not improve the cost of the Nash equilibrium in the



Braess’s Paradox: London 3

FIG. 2: (color) Networks of principal roads (both solid and dotted lines; the thickness represents the number of lanes). (a)
Boston-Cambridge area, (b) London, UK, and (c) New York City. The color of each link indicates the additional travel time
needed in the Nash equilibrium if that link is cut (blue: no change, red: more than 60 seconds additional delay). Black dotted
lines denote links whose removal reduces the travel time, i.e., allowing drivers to use these streets in fact creates additional
congestion. This counter-intuitive phenomenon is called ”Braess’s paradox.”

bij). Further examples with affine cost functions include
mechanical, hydraulic, and thermal networks [15].

For each model network, we go through every pair
of nodes to calculate the PoA for various total flows
F . Then the results are averaged over 50 networks to
find the mean 〈PoA(F )〉 for each ensemble as plotted in
Fig. 3(b). After averaging over many pairs, there are
no longer multiple local maxima as in Fig. 3(a). In-
stead, we find unimodal functions for all ensembles with a
steep increase for small F and a long tail for large flows.
The qualitative behavior can be understood as follows.
The social optimum minimizes C =

∑
(aijfij

2 + bijfij)
whereas the flow in the Nash equilibrium minimizes
C̃ =

∑
(1
2aijfij

2 + bijfij). In the limit F → 0, both ob-
jective functions become identical and, therefore, 〈PoA〉
→ 1. For F → ∞, the quadratic terms in the sums
dominate, hence C/C̃ → 2, i.e., both objective functions
are minimized by the same asymptotic flow pattern fij/F
and 〈PoA〉 again approaches 1. The maximum 〈PoA〉 oc-
curs roughly where the quadratic and linear terms in the
objective functions are comparable, i.e., aijfij ≈ bij for
paths with positive flow. Ignoring correlations between
aij and fij , we have 〈fij〉 ≈ 〈bij〉/〈aij〉. Since F = c〈fij〉
where c is a factor bigger than but of the order of 1, we es-
timate the maximum 〈PoA〉 to be at Fmax ≈ c〈bij〉/〈aij〉.
In our example, 〈aij〉 = 2 and 〈bij〉 = 50.5, so we pre-
dict Fmax to be bigger than but of the order of 25. Nu-
merically, we find the maxima for our four ensembles to
be between 30 and 60 in good agreement with our esti-
mate. Barabási-Albert networks tend to have the lowest
〈PoA(F )〉 and small-world networks the highest, but the
statistical dependence between 〈PoA〉 and F is strikingly
similar among all ensembles.

Knowing the PoA is important, but it is even more
valuable to discover a proper method to reduce it. In a
road network, one could charge drivers toll fees to stim-
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FIG. 3: (color) The price of anarchy (PoA), as a function
of the traffic volume F . (a) In Boston’s road network for
journeys from Harvard Square to Boston Common with BPR
delays with α = 0.2, β = 10. Inset: the PoA in London from
Borough to Farringdon, and in New York from Washington
Market Park to Queens Midtown Tunnel. (b) The PoA in
ensembles of model networks with affine delays. All networks
have 100 nodes and 300 undirected links. The error bars
represent one standard deviation in the PoA-distribution. In-
set: the PoA in regular lattices with multiple random sources
and sinks (“multi-commodity flows”) averaged over 100 to 400
networks. Each pair contributes equally to F .

ulate a more cooperative behavior, but that strategy has
problems of its own. For example, one could charge
a fee for using each link equal to the “marginal cost”
fij · lij

′(fij) so that the new Nash flow becomes equal
to the social optimum. Unfortunately, if collected taxes
are not returned to the users, such marginal cost taxes
do not improve the cost of the Nash equilibrium in the

3

FIG. 2: (color) Networks of principal roads (both solid and dotted lines; the thickness represents the number of lanes). (a)
Boston-Cambridge area, (b) London, UK, and (c) New York City. The color of each link indicates the additional travel time
needed in the Nash equilibrium if that link is cut (blue: no change, red: more than 60 seconds additional delay). Black dotted
lines denote links whose removal reduces the travel time, i.e., allowing drivers to use these streets in fact creates additional
congestion. This counter-intuitive phenomenon is called ”Braess’s paradox.”

bij). Further examples with affine cost functions include
mechanical, hydraulic, and thermal networks [15].

For each model network, we go through every pair
of nodes to calculate the PoA for various total flows
F . Then the results are averaged over 50 networks to
find the mean 〈PoA(F )〉 for each ensemble as plotted in
Fig. 3(b). After averaging over many pairs, there are
no longer multiple local maxima as in Fig. 3(a). In-
stead, we find unimodal functions for all ensembles with a
steep increase for small F and a long tail for large flows.
The qualitative behavior can be understood as follows.
The social optimum minimizes C =

∑
(aijfij

2 + bijfij)
whereas the flow in the Nash equilibrium minimizes
C̃ =

∑
(1
2aijfij

2 + bijfij). In the limit F → 0, both ob-
jective functions become identical and, therefore, 〈PoA〉
→ 1. For F → ∞, the quadratic terms in the sums
dominate, hence C/C̃ → 2, i.e., both objective functions
are minimized by the same asymptotic flow pattern fij/F
and 〈PoA〉 again approaches 1. The maximum 〈PoA〉 oc-
curs roughly where the quadratic and linear terms in the
objective functions are comparable, i.e., aijfij ≈ bij for
paths with positive flow. Ignoring correlations between
aij and fij , we have 〈fij〉 ≈ 〈bij〉/〈aij〉. Since F = c〈fij〉
where c is a factor bigger than but of the order of 1, we es-
timate the maximum 〈PoA〉 to be at Fmax ≈ c〈bij〉/〈aij〉.
In our example, 〈aij〉 = 2 and 〈bij〉 = 50.5, so we pre-
dict Fmax to be bigger than but of the order of 25. Nu-
merically, we find the maxima for our four ensembles to
be between 30 and 60 in good agreement with our esti-
mate. Barabási-Albert networks tend to have the lowest
〈PoA(F )〉 and small-world networks the highest, but the
statistical dependence between 〈PoA〉 and F is strikingly
similar among all ensembles.

Knowing the PoA is important, but it is even more
valuable to discover a proper method to reduce it. In a
road network, one could charge drivers toll fees to stim-
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FIG. 3: (color) The price of anarchy (PoA), as a function
of the traffic volume F . (a) In Boston’s road network for
journeys from Harvard Square to Boston Common with BPR
delays with α = 0.2, β = 10. Inset: the PoA in London from
Borough to Farringdon, and in New York from Washington
Market Park to Queens Midtown Tunnel. (b) The PoA in
ensembles of model networks with affine delays. All networks
have 100 nodes and 300 undirected links. The error bars
represent one standard deviation in the PoA-distribution. In-
set: the PoA in regular lattices with multiple random sources
and sinks (“multi-commodity flows”) averaged over 100 to 400
networks. Each pair contributes equally to F .

ulate a more cooperative behavior, but that strategy has
problems of its own. For example, one could charge
a fee for using each link equal to the “marginal cost”
fij · lij

′(fij) so that the new Nash flow becomes equal
to the social optimum. Unfortunately, if collected taxes
are not returned to the users, such marginal cost taxes
do not improve the cost of the Nash equilibrium in the



Braess’s Paradox: NYC
3

FIG. 2: (color) Networks of principal roads (both solid and dotted lines; the thickness represents the number of lanes). (a)
Boston-Cambridge area, (b) London, UK, and (c) New York City. The color of each link indicates the additional travel time
needed in the Nash equilibrium if that link is cut (blue: no change, red: more than 60 seconds additional delay). Black dotted
lines denote links whose removal reduces the travel time, i.e., allowing drivers to use these streets in fact creates additional
congestion. This counter-intuitive phenomenon is called ”Braess’s paradox.”

bij). Further examples with affine cost functions include
mechanical, hydraulic, and thermal networks [15].

For each model network, we go through every pair
of nodes to calculate the PoA for various total flows
F . Then the results are averaged over 50 networks to
find the mean 〈PoA(F )〉 for each ensemble as plotted in
Fig. 3(b). After averaging over many pairs, there are
no longer multiple local maxima as in Fig. 3(a). In-
stead, we find unimodal functions for all ensembles with a
steep increase for small F and a long tail for large flows.
The qualitative behavior can be understood as follows.
The social optimum minimizes C =

∑
(aijfij

2 + bijfij)
whereas the flow in the Nash equilibrium minimizes
C̃ =

∑
(1
2aijfij

2 + bijfij). In the limit F → 0, both ob-
jective functions become identical and, therefore, 〈PoA〉
→ 1. For F → ∞, the quadratic terms in the sums
dominate, hence C/C̃ → 2, i.e., both objective functions
are minimized by the same asymptotic flow pattern fij/F
and 〈PoA〉 again approaches 1. The maximum 〈PoA〉 oc-
curs roughly where the quadratic and linear terms in the
objective functions are comparable, i.e., aijfij ≈ bij for
paths with positive flow. Ignoring correlations between
aij and fij , we have 〈fij〉 ≈ 〈bij〉/〈aij〉. Since F = c〈fij〉
where c is a factor bigger than but of the order of 1, we es-
timate the maximum 〈PoA〉 to be at Fmax ≈ c〈bij〉/〈aij〉.
In our example, 〈aij〉 = 2 and 〈bij〉 = 50.5, so we pre-
dict Fmax to be bigger than but of the order of 25. Nu-
merically, we find the maxima for our four ensembles to
be between 30 and 60 in good agreement with our esti-
mate. Barabási-Albert networks tend to have the lowest
〈PoA(F )〉 and small-world networks the highest, but the
statistical dependence between 〈PoA〉 and F is strikingly
similar among all ensembles.

Knowing the PoA is important, but it is even more
valuable to discover a proper method to reduce it. In a
road network, one could charge drivers toll fees to stim-
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FIG. 3: (color) The price of anarchy (PoA), as a function
of the traffic volume F . (a) In Boston’s road network for
journeys from Harvard Square to Boston Common with BPR
delays with α = 0.2, β = 10. Inset: the PoA in London from
Borough to Farringdon, and in New York from Washington
Market Park to Queens Midtown Tunnel. (b) The PoA in
ensembles of model networks with affine delays. All networks
have 100 nodes and 300 undirected links. The error bars
represent one standard deviation in the PoA-distribution. In-
set: the PoA in regular lattices with multiple random sources
and sinks (“multi-commodity flows”) averaged over 100 to 400
networks. Each pair contributes equally to F .

ulate a more cooperative behavior, but that strategy has
problems of its own. For example, one could charge
a fee for using each link equal to the “marginal cost”
fij · lij

′(fij) so that the new Nash flow becomes equal
to the social optimum. Unfortunately, if collected taxes
are not returned to the users, such marginal cost taxes
do not improve the cost of the Nash equilibrium in the

3

FIG. 2: (color) Networks of principal roads (both solid and dotted lines; the thickness represents the number of lanes). (a)
Boston-Cambridge area, (b) London, UK, and (c) New York City. The color of each link indicates the additional travel time
needed in the Nash equilibrium if that link is cut (blue: no change, red: more than 60 seconds additional delay). Black dotted
lines denote links whose removal reduces the travel time, i.e., allowing drivers to use these streets in fact creates additional
congestion. This counter-intuitive phenomenon is called ”Braess’s paradox.”

bij). Further examples with affine cost functions include
mechanical, hydraulic, and thermal networks [15].

For each model network, we go through every pair
of nodes to calculate the PoA for various total flows
F . Then the results are averaged over 50 networks to
find the mean 〈PoA(F )〉 for each ensemble as plotted in
Fig. 3(b). After averaging over many pairs, there are
no longer multiple local maxima as in Fig. 3(a). In-
stead, we find unimodal functions for all ensembles with a
steep increase for small F and a long tail for large flows.
The qualitative behavior can be understood as follows.
The social optimum minimizes C =

∑
(aijfij

2 + bijfij)
whereas the flow in the Nash equilibrium minimizes
C̃ =

∑
(1
2aijfij

2 + bijfij). In the limit F → 0, both ob-
jective functions become identical and, therefore, 〈PoA〉
→ 1. For F → ∞, the quadratic terms in the sums
dominate, hence C/C̃ → 2, i.e., both objective functions
are minimized by the same asymptotic flow pattern fij/F
and 〈PoA〉 again approaches 1. The maximum 〈PoA〉 oc-
curs roughly where the quadratic and linear terms in the
objective functions are comparable, i.e., aijfij ≈ bij for
paths with positive flow. Ignoring correlations between
aij and fij , we have 〈fij〉 ≈ 〈bij〉/〈aij〉. Since F = c〈fij〉
where c is a factor bigger than but of the order of 1, we es-
timate the maximum 〈PoA〉 to be at Fmax ≈ c〈bij〉/〈aij〉.
In our example, 〈aij〉 = 2 and 〈bij〉 = 50.5, so we pre-
dict Fmax to be bigger than but of the order of 25. Nu-
merically, we find the maxima for our four ensembles to
be between 30 and 60 in good agreement with our esti-
mate. Barabási-Albert networks tend to have the lowest
〈PoA(F )〉 and small-world networks the highest, but the
statistical dependence between 〈PoA〉 and F is strikingly
similar among all ensembles.

Knowing the PoA is important, but it is even more
valuable to discover a proper method to reduce it. In a
road network, one could charge drivers toll fees to stim-
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FIG. 3: (color) The price of anarchy (PoA), as a function
of the traffic volume F . (a) In Boston’s road network for
journeys from Harvard Square to Boston Common with BPR
delays with α = 0.2, β = 10. Inset: the PoA in London from
Borough to Farringdon, and in New York from Washington
Market Park to Queens Midtown Tunnel. (b) The PoA in
ensembles of model networks with affine delays. All networks
have 100 nodes and 300 undirected links. The error bars
represent one standard deviation in the PoA-distribution. In-
set: the PoA in regular lattices with multiple random sources
and sinks (“multi-commodity flows”) averaged over 100 to 400
networks. Each pair contributes equally to F .

ulate a more cooperative behavior, but that strategy has
problems of its own. For example, one could charge
a fee for using each link equal to the “marginal cost”
fij · lij

′(fij) so that the new Nash flow becomes equal
to the social optimum. Unfortunately, if collected taxes
are not returned to the users, such marginal cost taxes
do not improve the cost of the Nash equilibrium in the



Comparison with random and regular models

Models with N = 100, < k >= 6

I 1-D lattice w/ links to 3rd nearest neighbors, periodic bdys

I ER RG

I SW nets with p = 0.1

I BA nets

lij = aij fij + bij

aij random integer ∈ {1, 2, 3}
bij random integer ∈ {1 . . . 100}



Comparison with random and regular models

SO optimizes: C =
∑

(aij f
2
ij + bij fij)

NE optimizes: C̃ =
∑

(1
2aij f

2
ij + bij fij)

PoA→ 1 when fij → 0 or fij →∞



What’s missing, what’s wrong, what’s next?

I Are there more frequent ‘paradox’-links?

I What does the PoA of ‘multicommodity’ (many source, many
destination) flow look like?

I Why is there such a ‘striking’ similarity between RG models?
(just a function of < k >?)



Optimal traffic networks (Barthélemy and Flammini 2006)

I Arbitrary allocation of traffic te to minimize we = de/te (s.t.
connectivity)?

I Stochastic optimization scheme (metropolis vs. simulated
annealing)

I If be is edge-betweenness, de is length of e, minimize

Eµν =
∑

e∈T

bµe dνe



Multilayered Spatial Network Optimization

I Infrastructure networks are composed of multiple entities:
independent airline carriers, utility transmission vs.
distribution companies

I Optimization problems solved by each layer/entity need not
be identical, e.g.:

I Southwest (‘point-to-point’) vs. Traditional carriers
(‘hub-and-spoke’)

I High-capacity transmission layer seeks a robust structure;
distribution layer simply minimizes cost to end-users



Why these papers {a OR we}re worth your time

I Infrastructure networks’ design emerges from simple
optimization

I Flows on networks: network structure/function determines
user preferences which in turn have nontrivial effects on
network function

I (Cool pictures)


