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Dynamics on Networks

What does this mean?
• Focus on processes (diffusion, synchronization,

proliferation) occurring on networks
• Functionality and efficiency of such processes relative to

network topology and dynamics
Why do we care?
• Understand real-world networks
• Find a connection between structure and function
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Importance of Synchronization

• Synchronization is observed in many real-world networks
• Fireflies flashing together
• Neurons firing in a neural network
• Heart pacemaker cells
• Coupled laser arrays

• Understanding these may shed light on other networks
• Connection to network structure?
• Reveal unseen function
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Kuramoto Model

Synchronization itself is very broad, simplify analysis by using
the Kuramoto model:
• Established, standard model for synchronization
• Well studied
• Simple, yet robust
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Kuramoto Model

Given N coupled oscillators, whose dynamics satisfy

dφi

dt
= ωi +

N∑
j=1

Jij sin(φj − φi) + Ii,m

• φi(t) = phase of oscillator i at time t
• ωi = natural frequency of oscillator i
• Jij = coupling strength between oscillators i and j
• Ii,m = external driving strength to oscillator i for driving

condition m
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Perturbations Near Synchronization

Consider the difference between the perturbed and
unperturbed system

Di,m = Ωm − Ω0 − Ii,m
=

∑N
j=1 Jij[sin(φj,m − φi,m) − sin(φj,0 − φi,0)]

≈
∑N

j=1 Lijθj,m

• L is the Laplacian matrix
• Ωm and Ω0 are the driven and undriven collective

frequencies
• θj,m = φj,m − φj,0
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Results

• Each driving condition m yields N − 1 independent phase
shifts (θi,m) and a collective frequency Ωm

• Gives N of possible N2 network connections
• M driving conditions provide MN restrictions⇒ need at

most N experimental runs
• Reveals strength of connection
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Difficulties

• Difficult to solve D = Lθ (ill-conditioned)
• Network size
• Cost of each experiment

How can we improve this method?
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Improvement

• Realize that most networks do not have N2 connections
• Use singular value decomposition to create the matrix Ĵ

and minimize ||Ĵ||1
• Result: sparsest matrix that satisfies the system equations

(minimal connections)
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Quality of reconstruction

Element-wise difference between real and computed
connectivity matrices:

∆Jij :
|Jderived

ij − Jactual
ij |

2Jmax

Quality of reconstruction to accuracy α after M experiments:

Qα(M) :=
1

N2

∑
i,j

H((1 − α) −∆Jij),

where H is the Heaviside step function (H(x) = 1 for x ≥ 0).
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Quality of Reconstruction

To achieve this goal, we use the constraints (7) to pa-
rametrize the family of admissible matrices by �N �M�N
real parameters Pij, i 2 f1; . . . ; Ng, j 2 fM� 1; . . . ; Ng, in
a standard way using a singular value decomposition of
�T � USVT , where the M
 N matrix S contains the
singular values on the diagonal Sij � �ij�i 
 0. We re-
write the set of all coupling matrices Ĵ � DU~SVT � PV,
setting Pij � 0 for all j � M and ~Sij � �ij=�i if �i >
10�4 and ~Sii � 0 if �i � 10�4. Finally, we minimize the
1-norms of the row vectors of Ĵ (input coupling strengths)

 kĴik1 :�
XN

j�1;j�i

jĴijj (8)

with respect to the parameters P, separately for all oscil-
lators i. By this method, we find the network with a
minimal number of incoming links (maximal number of
zero entries) [28]; thus, we find a particularly sparse net-
work satisfying the measurement data. Reasonably good
reconstructions can already be obtained with the number of
experiments M being substantially smaller than N, as
illustrated in Fig. 3.

How reliable is such a reconstruction? This depends on
the details of the network connectivity and the realization
of driving. We did a case study for random networks of dif-
ferent numbers N of identical oscillators each receiving
input connections from ki�k<N randomly chosen
others. Using Jmax � maxi0;j0 fjJ

derived
i0j0 j; jJoriginal

i0j0 jg, define
the elementwise relative difference as

 �Jij :� J�1
maxjJderived

ij � Joriginal
ij j=2 (9)

such that �Jij 2 �0; 1	. AfterM experiments, the quality of
reconstruction is defined as the fraction

 Q��M� :�
1

N2

X
i;j

H��1� �� ��Jij� 2 �0; 1	 (10)

of coupling strengths which are considered correct. Here
� � 1 is the required accuracy of the coupling strengths

andH the Heaviside step function;H�x� � 1 for x 
 0 and
H�x� � 0 for x < 0. Typically, the quality of reconstruc-
tion increases with M (but depends also on the realizations
of the experiments), becoming close to 1 already for M
substantially smaller than N; see Fig. 4(a). We furthermore
evaluated the minimum number of experiments

 Mq;� :� minfMjQ��M� 
 qg (11)

required for accurate reconstruction on quality level q.
Figure 4(b) shows M0:98;0:95, the minimum number of ex-
periments required for having at least q � 98% of the links
accurate in strength on an accuracy level of at least � �
0:95, as a function of N. The numerics suggests that Mq;�

generally scales sublinearly (presumably logarithmically)
with network size N for reasonable 0< 1� �� 1 and
0< 1� q� 1. In particular, it implies that the connec-
tivity of a network can be revealed reliably even if M is
much smaller than the network size N.

In the present study we took advantage of the fact that, in
response to driving (cf. also [21–26]), networks with stable
dynamics respond in a way characteristic of their connec-
tivity (cf. also Fig. 1 and Refs. [25,26]). Thus, information
about the connectivity can be revealed from measuring the
response dynamics. To achieve this, we exploited all avail-
able information of the network dynamics (the N � 1
independent phase differences and the collective fre-
quency) rather than only statistical information such as
one order parameter. Interestingly, in a recent study,
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FIG. 3. Revealing connectivity with M<N experiments.
Network (N � 64, ki � 10, !i � 1) reconstructed by minimiz-
ing the 1-norm, (a) M � 38 and (b) M � 24. The insets are as in
Fig. 2.
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FIG. 4. Quality of reconstruction and required number of ex-
periments. (a) Quality of reconstruction (� � 0:95) for k � 10
and N � 24 (�), N � 36 (4), N � 66 (�), and N � 96 (�).
(b) Minimum number of experiments required (q � 0:98, � �
0:95) versus network size N with best linear and logarithmic fits
(gray and black solid lines). The inset shows same data with N
on logarithmic scale.
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FIG. 2. Inferring connectivity from measuring response dy-
namics. M � N � 16 experiments [29]. (a),(b) Connectivities
of the networks with homogeneous and heterogeneous natural
frequencies of Figs. 1(a) and 1(b), respectively, as reconstructed
using Eqs. (5)–(7). The matrix of off-diagonal connection
strengths Ĵij is gray-coded from light gray (Ĵij � 0) to black
(Ĵij � maxi0;j0 fĴi0j0 g). Insets: Elementwise absolute difference
jJoriginal
ij � Jderived

ij j, plotted on the same scale.

PRL 98, 224101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
1 JUNE 2007

224101-3

Figure: Quality of reconstruction and required number of experiments.
Quality of reconstruction ( α = .95) for k = 10 and N = 24(�),
N = 36(4), N = 66(◦), and N = 96(©)
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Minimum Number of Experiments

Minimum number of experiments for accurate reconstruction on
quality level q:

Mq,α := min{M : Qα(M) ≥ q}

• Assuming 0 < 1 − α� 1 and 0 < 1 − q � 1
• Sublinear in numerical experiments
• Connectivity can be determined even if M � N
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Minimum Number of Experiments
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Figure 4: Quality of reconstruction and required number of experiments. (a) Quality of reconstruction

(α = 0.95) displayed fork = 10 andN = 24 (⋄), N = 36 (△), N = 66 (◦), N = 96 (©) . (b)

Minimum number of experiments required (q = 0.90, α = 0.95) versus network sizeN with best linear

and logarithmic fits (gray and black solid lines). Inset shows same data withN on logarithmic scale.

[20] also used more detailed information of the dynamics andsuccessfully inferred the hierarchical

structure of a network.

The method presented here not only identifies where links arepresent and where they are absent

but also gives a good estimate for the strength of each connection. For networks with a substantial

number of potential links absent, we furthermore showed howto predict the connectivity in a reli-

able way even by a number of experiments that is much smaller than the network size. In fact, the

numerical evaluation suggests that the number of experiments required for faithful reconstruction

only scales sub-linearly with the network size. The relatively simple yet efficient method presented

here thus qualifies as potentially practically useful also for real systems of moderate or larger size

where the number of measurement might be desired as small as possible. An important question

for future research is thus how to extend the method presented here to networks of dynamical

elements that are described by more than one variable and that possibly do not synchronize but

organize into some other, more complicated, collective state.

The multidisciplinary research community studying networks has recently seen significant

progress towards understanding the implications of structural features for network dynamics and

function, in particular in biological networks. Interesting examples [9, 10, 11] include (i) net-

work motifs, small subnetworks that occur significantly more often than in randomized networks,

have been identified in a variety of complex systems and mightbe designed for functionality;

(ii) a small part of a genetic pathway was successfully identified based on expression profiling;

(iii) neural wiring in the brain appears to follow optimization rules. Together with such find-

8

Figure: Minimum number of experiments required (q = .90, α = .95)
versus network size N with best linear and logarithmic fits (gray and
black solid lines). Inset show same data with N on logarithmic scale.
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network

Very often, we wish to know more than just connectivity. Can
we detect community structure as well?
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• Start with Kuramoto model for coupled oscillators:

dφi

dt
= ωi +

N∑
j=1

Jij sin(φj − φi) + Ii,m

With Ii,m = 0 (undriven network)
• Look at average correlation between pairs of nodes.

Define local order parameter:

ρij(t) = 〈cos(φi(t) − φj(t))〉

• Why cosine?
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Dynamic Connectivity Matrix

Convert correlation matrix [ρij] into a binary matrix.

Define

Dt (T)ij =

{
1 if ρij(t) ≥ T
0 if ρij(t) < T

T is some threshold value.
• Different values of T reveal different levels of structure in

the network
• Fix a threshold T and look at time evolution
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Visualization of Dynamic Connectivity

What are the communities of this network?

a) b)

c)
 1  2  3  4  5  6  7  8  9 

 t
im

e 

d)

Fig. 3. Deterministic network with 2 levels. a) the network structure; b) eigenvalues
spectra and number of detected communities as a function of time; c) dendogram of
the community merging; d) time needed for each pair of oscillators to synchronize.
Red for shorter times, blue for larger times.

4 The connection between synchronization and topology

The visualization of the correlation matrix of the system helps in elucidating
the topology of the network. To extract the quantitative information it is
useful to introduce some threshold T to convert the correlation matrix into a
binary matrix, that will be used to determine the borders between different
groups. We define a dynamic connectivity matrix

Dt(T )ij =





1 if ρij(t) > T

0 if ρij(t) < T
(5)

8

10

nizability observed in this case.

Red for shorter times, blue for longer times
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Examples

What about this network?

a) b)

c)

 
t
i
m

e
 

d)

Fig. 1. Network with a inhomogeneous distribution of communities. a) the network
structure; b) eigenvalues spectra and number of detected communities as a function
of time; c) dendogram of the community merging. d) time needed for each pair of
oscillators to synchronize. Red for shorter times, blue for larger times.

used as an example of hierarchical scale-free networks, proposed by Ravasz
and Barabasi [38]. This type of networks, apart from its hierarchical structure
has some nodes with a special role in terms of number of connexions (hubs) in
contrast to the networks discussed previously that are essentially homogeneous
in degree. In Fig. 3a we present a very simple example of this class of networks
for the case of two hierarchical levels.

In a previous work [21] we represented the correlation matrix of the system
ρij(t) at the same time instant t for two slightly different two level hierar-
chical networks with structure 13-4 and 15-2. From that representation, we
could identify the two levels of the hierarchical distribution of communities.

6

10

nizability observed in this case.
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Examples

And this network?

a) b)

c)

 tim
e 

d)

Fig. 2. Network with 3 levels of communities. a) the network structure; b)eigenvalues
spectra and number of detected communities as a function of time; c) dendogram of
the community merging; d) time needed for each pair of oscillators to synchronize.
Red for shorter times, blue for larger times.

The network 13-4 is very close to a state in which the four large groups are al-
most synchronized whereas the network 15-2 still presents some of the smaller
groups of synchronized oscillators, and the larger group starting to synchro-
nize, coherently with their topological structure. This picture that relates dy-
namics and topology, and distinguishes at a given time the two configurations,
was our starting point and we follow this formalism in the next section.

7

10

nizability observed in this case.
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Results

• Accurately detects the community structure of a network
• Also detects substructure within communities
• Reveals equivalence between disconnected communities
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Pattern Evolution

Dynamics can reveal a lot of information about network
connectivity and community structure

Can network structure predict the behavior of the dynamics?
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Scale-Free Networks
Recall that our degree distribution follows a power law:

P(k ) ∼ k−γ

For our purposes (and in many real-world networks) 2 < γ < 3
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Our Model

• Undirected network with scale-free degree distribution
• Vertex degree governed by k0 ≤ k ≤ kmax with k0 ≥ 2 and

kmax ∼ N1/γ−1

• Average vertex degree 〈k 〉 ≥ 10
• Each vertex has a binary, Ising-like spin variable
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Time evolution

We use local majority dynamics
• State of vertex i at time t is σi(t) = ±1.
• Evolution of system:

σi(t + 1) =


+1 if hi(t) > 0
−1 if hi(t) < 0
±1 with P = 1

2 if hi(t) = 0

• hi(t) =
∑
j∈Ji

σj(t) with Ji = {nodes connected to vertex i}.
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To study evolution patterns, consider
• qk (t) = probability that a vertex of degree k is +1
• Q(t)= probability that for any vertex chosen, a random

neighbor is +1
A vertex associated with a random edge has degree = k with
probability kP(k)∑

k
kP(k) =

kP(k)
〈k 〉 .

Then

Q(t) =
∑

k

kP(k )

〈k 〉
qk (t)
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Time evolution of model

Given our previous description of local majority dynamics, we
see

qk (t + 1) =

k∑
m=dk/2e

[
1 −

1
2
δm,k/2

] (k
m

)
Qm(t)[1 −Q(t)]k−m

and

Ψ(Q) = Q(t + 1) =
∑

k

kP(k )

〈k 〉
qk (t + 1)
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Phase Boundary

It is easy to check that Q has 3 fixed points: 0,1
2 , and 1.

• 0 and 1 are both stable (all + or all - system)
•

1
2 is unstable phase boundary between attracting fixed
points

Define order parameter y(t) =
∣∣∣Q(t) − 1

2

∣∣∣
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Evolution of order parameter

Working with the equations of our model, we find that

y(t + 1) ≈ Ψ′
(1
2

)
y(t)

Ψ′
(1
2

)
≈

cγk
1/2
0 for γ > 5

2
cγk

1/2
0 ln N for γ = 5

2
cγk

1/2
0 Nα/2 for 2 < γ < 5

2

where α =
5−2γ
γ−1
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Analytical results

Starting with a strongly disordered state (y(t0) = ± 1
N ) evolve

system using local majority rule dynamics.

Define td as the time to reach y∗, that satisfies |y∗| ≥ 1
4

From analysis of our evolution equations, we find td ≈
ln(〈k 〉N)

ln(Ψ′(1/2))

td ∼

ln N for γ > 5
2

ln N
ln(ln N) for γ = 5

2

2 γ−1
5−2γ for 2 < γ < 5

2



Introduction Synchronization Pattern Evolution

Numerical results

Figure: γ = 2.25 and k0 = 5 ( ), γ = 3 and k0 = 10 (�), Poissonian
network (_). N = 218, 〈k 〉 = 20.
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Figure: γ = 2.25 and k0 = 5 ( ), γ = 3 and k0 = 10 (�), Poissonian
network (_).
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Figure: γ = 2.25 and k0 = 5 ( ), γ = 2.5 and k0 = 7 (�), γ = 3 and
k0 = 10 (_), 〈k 〉 = 20. Filled = numerical, empty = analytic
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Results

• Numerical simulations agree with analysis of evolution
equations

• We don’t find domains with different patterns (no
meta-stability)

• In all numerical runs, the probability of not reaching a
completely ordered pattern is less than 10−2

• Decrease in mean vertex degree (〈k 〉) increases decay
time
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Changing existing patterns

Given a network in an all-spin-down pattern, how many flips to
cause evolution into all-spin-up pattern?
• Simple-minded approach: Choose random vertices -

Requires ∼ N
2 flips

• Better approach: Choose mostly highly connected vertices
Analytic results:

Ωmin ≈ 2−(γ−1)/(γ−2)

Note that

lim
γ→2+

Ωmin = 0 and lim
γ→∞

Ωmin =
1
2
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Figure: Minimal fraction Ωmin of spins that must be flipped to induce
transition from all-spin-down to all-spin-up pattern. N = 105. Open
squares = analytic results, Filled squares = numerical results.
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Big picture

• γ = 5
2 represents a sharp boundary for pattern evolution on

scale-free networks.
• For 2 < γ < 5

2 strongly disordered patterns decay in finite
even in the limit of large N

• Not the case for γ ≥ 5
2

Many real-world networks have 2 < γ < 5
2 . Why?
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Where to go from here

• Weighted edges in network
• Effect of clustering and modularity
• Dynamic topology
• Interaction delays
• Multi-layered network
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