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Dynamics on Networks

What does this mean?

e Focus on processes (diffusion, synchronization,
proliferation) occurring on networks

¢ Functionality and efficiency of such processes relative to
network topology and dynamics

Why do we care?
e Understand real-world networks
e Find a connection between structure and function



INTRODUCTION SYNCHRONIZATION PATTERN EvoLuTION

Problem: "Dynamics on Networks" is very broad
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Problem: "Dynamics on Networks" is very broad

Solution: Narrow our focus
e Synchronization
e Pattern evolution
What is their relation to network connectivity and topology?
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Synchronization

What is synchronization?

e Intuitive answer: Highly similar behavior
Can we be more precise?

e Exact

Generalized synchronization
Phase

e Lag
Anticipatory
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Importance of Synchronization

e Synchronization is observed in many real-world networks
o Fireflies flashing together
¢ Neurons firing in a neural network
e Heart pacemaker cells
e Coupled laser arrays
o Understanding these may shed light on other networks

e Connection to network structure?
e Reveal unseen function
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Kuramoto Model

Synchronization itself is very broad, simplify analysis by using
the Kuramoto model:

e Established, standard model for synchronization
e Well studied
e Simple, yet robust



SYNCHRONIZATION

Kuramoto Model

Given N coupled oscillators, whose dynamics satisfy

d

¢i(t) = phase of oscillator i at time ¢
wj = natural frequency of oscillator i
Jjj = coupling strength between oscillators i and j

l; m = external driving strength to oscillator i for driving
condition m
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Perturbations Near Synchronization

Consider the difference between the perturbed and
unperturbed system

Di,m = Qm_QO - I/m
/\I 1 JU[Sm ¢jm = Pim) — sin(pjo — Pio)]

e | is the Laplacian matrix
o O, and Qq are the driven and undriven collective
frequencies

* Ojm = ¢jm— Pjo
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Results

Each driving condition m yields N — 1 independent phase
shifts (0;m) and a collective frequency Qn

Gives N of possible N2 network connections

M driving conditions provide MN restrictions = need at
most N experimental runs

Reveals strength of connection
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Difficulties

o Difficult to solve D = L6 (ill-conditioned)
o Network size
e Cost of each experiment

How can we improve this method?
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Improvement

¢ Realize that most networks do not have N2 connections

e Use singular value decomposition to create the matrix J
and minimize ||J||4

e Result: sparsest matrix that satisfies the system equations
(minimal connections)
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Quality of reconstruction

Element-wise difference between real and computed
connectivity matrices:

derived _ jactual
¥ Jaoual|

Adj :
JU 2Jmax

Quality of reconstruction to accuracy a after M experiments:
1
Qu(M) := 35 Z H((1 - o) - AJy),
ij

where H is the Heaviside step function (H(x) = 1 for x > 0).
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Quality of Reconstruction
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Figure: Quality of reconstruction and required number of experiments.
Quality of reconstruction (@ = .95) for k = 10 and N = 24(¢),
N =36(2), N =66(c), and N = 96(Q)
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Minimum Number of Experiments

Minimum number of experiments for accurate reconstruction on
quality level g:

Mg, := min{M : Q,(M) > g}

e Assuming0<1-a<xland0<1-g<x1
e Sublinear in numerical experiments
e Connectivity can be determined even if M < N
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Minimum Number of Experiments
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Figure: Minimum number of experiments required (g = .90, « = .95)
versus network size N with best linear and logarithmic fits (gray and
black solid lines). Inset show same data with N on logarithmic scale.
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Community detection

Synchronization dynamics can reveal the connectivity of a
network

Very often, we wish to know more than just connectivity. Can
we detect community structure as well?
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o Start with Kuramoto model for coupled oscillators:
d
¢'_w,+Z‘JUsm + lim

With [; ;, = 0 (undriven network)

e Look at average correlation between pairs of nodes.
Define local order parameter:

pij(t) = (cos(i(t) — P;(t)))

e Why cosine?
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Dynamic Connectivity Matrix

Convert correlation matrix [pj] into a binary matrix.

Define
1 () =T
Di(T); = { 0 ifpi(t)<T

T is some threshold value.

e Different values of T reveal different levels of structure in
the network
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Dynamic Connectivity Matrix

Convert correlation matrix [pj] into a binary matrix.

Define (0
1 (=T
DT = { 0 ifp(t)<T
T is some threshold value.

e Different values of T reveal different levels of structure in
the network

e Fix a threshold T and look at time evolution
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And this network?
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Results

o Accurately detects the community structure of a network
¢ Also detects substructure within communities
¢ Reveals equivalence between disconnected communities
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Pattern Evolution

Dynamics can reveal a lot of information about network
connectivity and community structure

Can network structure predict the behavior of the dynamics?
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Scale-Free Networks
Recall that our degree distribution follows a power law:

P(k) ~ k™

For our purposes (and in many real-world networks) 2 <y <3
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Our Model

Undirected network with scale-free degree distribution

Vertex degree governed by kg < k < Kmax With kg > 2 and
kmax ~ N1 fy-1
Average vertex degree (k) > 10

Each vertex has a binary, Ising-like spin variable
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Time evolution

We use local majority dynamics
o State of vertex i at time t is 0;(t) = =1.
e Evolution of system:

+1 if hi(t) > 0

oi(t+1)={ —1 if hi(t) <0
1withP=1 ifh(t)=0

e hi(t) = X oj(t) with J; = {nodes connected to vertex i}.
jed;
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To study evolution patterns, consider
e gk (t) = probability that a vertex of degree k is +1

e Q(t)= probability that for any vertex chosen, a random
neighbor is +1
A vertex associated with a random edge has degree = k with

probability stk = .
k

Then KP(k
an =Y, “stad
k
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Time evolution of model

Given our previous description of local majority dynamics, we
see

Qe(t+1) = Zk: [1 —%5m,k/2](r’;)om(t)[1 QT

m=[k/2]

and kP(K)
W(Q) =Q(t+1)=) qo k(1)

k
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Phase Boundary

It is easy to check that Q has 3 fixed points: O,%, and 1.
e 0 and 1 are both stable (all + or all - system)
o % is unstable phase boundary between attracting fixed
points
Define order parameter y(t) = |Q(t) - 3|



Evolution of order parameter

Working with the equations of our model, we find that
(1
y(t+1) = v (3) ()

] ¢k /2 fory >3
W’(E)z cyky/2InN  fory =3
cyky/PNY2 for2<y <3

5-2y

where a = -

Partern EvoLuTioN
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Analytical results

Starting with a strongly disordered state (y(ty) = i1N) evolve
system using local majority rule dynamics.

. . " T " 1
Define ty as the time to reach y*, that satisfies |y*| > 7

From analysis of our evolution equations, we find ty ~ %

InN  fory >3
InN _5
tg ~ In(?n N) fory = 2

y-1 5
2z 2 for2<y<3
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Numerical results
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Fiqure: y =2.25and ky = 5 (@), y = 3 and ko = 10 (m), Poissonian
network (#). N = 218, (k) = 20.
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Figure: y =2.25and ky = 5 (@), y = 3 and ko = 10 (m), Poissonian
network (¢).
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Figure: y =225and kp =5 (@), y=25and ky =7 (m), y = 3 and
ko = 10 (@), (k) = 20. Filled = numerical, empty = analytic
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Results

Numerical simulations agree with analysis of evolution
equations

We don'’t find domains with different patterns (no
meta-stability)

In all numerical runs, the probability of not reaching a
completely ordered pattern is less than 1072

Decrease in mean vertex degree ((k)) increases decay
time
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Changing existing patterns

Given a network in an all-spin-down pattern, how many flips to
cause evolution into all-spin-up pattern?
e Simple-minded approach: Choose random vertices -
Requires ~ § flips
o Better approach: Choose mostly highly connected vertices
Analytic results:
Quin ~ 2-0-1/0-2)

Note that

. . 1
lim Qmin=0 and lim Qmin = =
y—2+ y—o 2
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Figure: Minimal fraction Qnmi, of spins that must be flipped to induce
transition from all-spin-down to all-spin-up pattern. N = 10°. Open
squares = analytic results, Filled squares = numerical results.
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Big picture

oy = % represents a sharp boundary for pattern evolution on
scale-free networks.

e For2a<y< g strongly disordered patterns decay in finite
even in the limit of large N

* Not the case for y > 3

Many real-world networks have 2 < y < 3. Why?



Where to go from here

Weighted edges in network

Effect of clustering and modularity
Dynamic topology

Interaction delays

Multi-layered network

Partern EvoLuTioN
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