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2.1 Introduction

Current data networking technology limits a network’s ability to adapt, of-
ten resulting in sub-optimal performance. Limited in state, scope, and re-
sponse mechanisms, the network elements (consisting of nodes, protocol layers,
policies, and behaviors) are unable to make intelligent adaptations. Communi-
cation of network state information is stifled by the layered protocol architec-
ture, making individual elements unaware of the network status experienced
by other elements. Any response that an element may make to network stimuli
can only be made in the context of its limited scope. The adaptations that are
performed are typically reactive, taking place after a problem has occurred.
In this chapter, we advance the idea of cognitive networks, which have the
promise to remove these limitations by allowing networks to observe, act, and
learn in order to optimize their performance.

Cognitive networks are motivated by complexity. Particularly in wireless
networks, there has been a trend towards increasingly complex, heterogeneous,
and dynamic environments. While wired networks can also take on any of
these characteristics (and are not excluded from potential cognitive network
applications) wireless networks are a natural target because of their inter-node
interactions and the size of their system state space. Previous research into
cognitive radio and cross-layer design have addressed some of these issues but
have shortcomings from the network perspective. Cognitive networks represent
a new scope and approach to dealing with this complexity.

This chapter provides the reader with a primer on the cognitive network
concept, as envisioned by the authors. It begins by explaining the need for
cognitive networks, how they are defined, and possible applications for the
technology. Then the chapter examines how cognitive networks are related
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to, but distinct from, previous work in cognitive radios and cross-layer de-
sign. A practical discussion of the implementation of a cognitive network and
important areas of future work close the chapter.

2.1.1 Definition

Cognitive networks were first described by us in [1] as

. . . a network with a cognitive process that can perceive current net-
work conditions, and then plan, decide and act on those conditions.
The network can learn from these adaptations and use them to make
future decisions, all while taking into account end-to-end goals.

The cognitive aspect of this definition is similar to that used to describe
cognitive radio and broadly encompasses many simple models of cognition
and learning. More critical to the definition are the network and end-to-end
aspects. Without the network and end-to-end scope, the system is perhaps
a cognitive radio or layer, but not a cognitive network. Here, end-to-end de-
notes all the network elements involved in the transmission of a data flow.
For a unicast transmission, this might include such elements as subnets,
routers, switches, virtual connections, encryption schemes, mediums, inter-
faces, and waveforms. The end-to-end goals are what give a cognitive network
its network-wide scope, separating it from other adaptation approaches, which
have only a local, single element scope.

2.1.2 Motivation and Requirements

The overall goal of any technology is that it meet some need in the best way
possible for the least cost. With the first half of this goal in mind, a cognitive
network should provide, over an extended period of time, better end-to-end
performance than a non-cognitive network. Cognition can be used to improve
such end-to-end objectives as resource management, Quality of Service (QoS),
security, access control, or throughput. Cognitive networks are only limited in
application by the adaptability of the underlying network elements and the
flexibility of the cognitive process.

In examining the second half of the goal, the cost must justify the per-
formance. Cognitive network costs are measured in terms of communications
and processing overhead, architecture roll-out and maintenance expenses, and
operational complexity. These costs must be outweighed by the performance
improvement the cognitive network provides. For certain environments, such
as static wired networks with predictable behavior, it may not make sense
to convert to cognitive operation. Other environments, such as heterogeneous
wireless networks, may be ideal candidates for cognition.

Cognitive networks should use observations (or proxy observations) of
network performance as input to a decision making process and then pro-
vide output in the form of a set of actions that can be implemented in the
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modifiable elements of the networks. Ideally, a cognitive network should be
forward-looking, rather than reactive, and attempt to adjust to problems be-
fore they occur. Additionally, the architecture of a cognitive network should
be extensible and flexible, supporting future improvements, network elements,
and goals.

Cognitive networks require a Software Adaptable Network (SAN) to im-
plement the actual network functionality and allow the cognitive process to
adapt the network. Similarly to cognitive radio, which depends on a Software
Define Radio (SDR) to modify aspects of radio operation (e.g. time, frequency,
bandwidth, code, spatiality, waveform), a SAN depends on a network that has
one or more modifiable elements. Practically, this means that a network must
be able to modify one or several layers of the network stack in its member
nodes. A simple example of a SAN could be a wireless network with direc-
tional antennas (antennas with the ability to direct their maximum receive or
transmit gain to various points of rotation). A more complex example would
incorporate more modifiable aspects at various layers of the protocol stack,
such as Medium Access Control (MAC) algorithms or routing control.

2.1.3 A Simple Example

As an example of the need for end-to-end rather than just link adaptations,
consider an ad-hoc data session between a source node, S1, and a destina-
tion node, D1, as shown in Figure 2.1. The source node must route traffic
through intermediate nodes R1 and R2 acting as regenerative relays. Node
S1 performs a link adaptation by choosing the relay node based on the set of
minimum hop routes to D1 and the probability of link outage. For this simple
network, nodes R1 and R2 are both in the set of minimum hop relays on routes
to D1. Therefore, node S1 selects the link on which to transmit by observing
the outage probabilities on the links to R1 and R2 and selecting the link with
the lower outage probability. From the standpoint of the link layer in node S1,
this guarantees that the transmitted packets have the highest probability of
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Fig. 2.1. Simple relay network for illustrating the need for cognition with an end-
to-end scope.
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arriving correctly at the relay node. However, it does not guarantee anything
about the end-to-end performance, i.e. the total outage probability from S1

to D1.
In contrast to the link adaptation, the cognitive network uses observations

from all nodes to compute the total path outage probabilities from S1 to
D1 through R1 and R2. This shows the benefit of a more global view as
well as another advantage to the cognitive network, the learning capability.
Suppose that the learning mechanism measures throughput from the source
to its destination in order to judge the effectiveness of previous decisions,
and suppose that nodes S1 and S2 are both routing their traffic through R2

because this satisfies the minimum outage probability objective.
Now suppose that R2 becomes congested because of a large volume of

traffic coming from S2. This becomes apparent to the cognitive process in
the throughput reported by S1 and S2, though the cognitive process is not
explicitly aware of the congestion. Nevertheless, it is able to infer from the
reduced throughput and its past experiences that there may be a problem.
The cognitive process is then able to respond to the congestion, perhaps by
routing traffic through R1 and/or R3. This example illustrates the potential of
cognitive networks in optimizing end-to-end performance as well as reacting
to unforeseen circumstances. The cognitive network goes beyond the purely
algorithmic approach of the underlying routing protocol and finds efficient
operating points even when unexpected events occur.

2.2 Foundations and Related Work

Having defined a cognitive network, it is helpful to review some existing
research areas that are related to the cognitive network concept. We take
a look at two areas in particular, cognitive radio and cross-layer design.

2.2.1 Cognitive Radio

Shared Attributes with Cognitive Networks

The 50% correlation in nomenclature would itself imply some degree of com-
monality, and it can certainly be argued that research in cognitive radio has
sparked the formulation of the cognitive network concept. What cognitive ra-
dios and cognitive networks do share is the cognitive process that is the heart
of the performance optimizations. An essential part of the cognitive process
is the capability to learn from past decisions and use this learning to influ-
ence future behavior. Both are goal-driven and rely on observations paired
with knowledge of node capabilities to reach decisions. Knowledge in cogni-
tive radio is contained within a modeling language such as Radio Knowledge
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Representation Language (RKRL) [2]. A network-level equivalent must exist
for the cognitive network to be goal oriented and achieve context awareness,
two attributes that it shares with a cognitive radio.

A cognitive radio requires tunable parameters which define the optimiza-
tion space of the cognitive process. These tunable parameters are ideally pro-
vided by an SDR. The concept of the SAN is the cognitive network analog of
SDR. Therefore, both technologies employ a software tunable platform that
is controlled by the cognitive process.

Differences from Cognitive Networks

Cognitive networks are clearly delineated from cognitive radios by the scope
of the controlling goals. Goals in a cognitive network are based on end-to-end
network performance, whereas cognitive radio goals are localized only to the
radio’s user. These end-to-end goals are derived at run-time from operators,
users, applications, and resource requirements in addition to any design-time
goals. This difference in goal scope from local to end-to-end enables the cog-
nitive network to operate more easily across all layers of the protocol stack.
Current research in cognitive radio emphasizes interactions with the physical
layer, which limits the direct impact of changes made by the cognitive process
to the radio itself and other radios to which it is directly linked or with which
it may interfere. Agreement with other radios on parameters that must match
for successful link communication is reached through a process of negotiation.
Since changes in protocol layers above the physical layer tend to impact more
nodes in the network, the cognitive radio negotiation process would have to be
expanded to include all nodes impacted by the change. However, because the
negotiation process is unable to assign precedence to radios’ desires without
goals of a broader scope, achieving agreement among multiple nodes may be a
slow process. For the same reason, the compromise can be expected to result
in sub-optimal network performance. In contrast, whether the network com-
ponents are acting in a cooperative or selfish manner, all cognitive network
actions are referenced back to the end-to-end network goals.

Another significant difference between cognitive radios and cognitive net-
works is the degree of heterogeneity that is supported. Cognitive networks
are applicable to both wired and wireless networks whereas cognitive radios
are only used in wireless networks. Since the cognitive network may span
wired and wireless mediums, it is useful for optimizing performance for these
heterogeneous types of networks, which are generally difficult to integrate.

The fact that a cognitive network is composed of multiple nodes also adds
a degree of freedom in how the cognitive processing is performed compared
to cognitive radio. A cognitive network has the option to implement a fully
distributed, partially distributed, or centralized cognitive process.
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2.2.2 Cross-layer Design

Shared Attributes with Cross-layer Design

Designs that violate the traditional layered approach by direct communica-
tion between non-adjacent layers or sharing of internal information between
layers are called cross-layer designs [3]. Cognitive networks indirectly share in-
formation that is not available externally in the strictly layered architecture.
Therefore, cognitive networks do implement cross-layer designs.

The common theme between these two concepts is that in both,
observations are made available for adaptations at layers other than the
layer providing the observation. In a cognitive network, protocol layers pro-
vide observations of current conditions to the cognitive process. The cognitive
process then determines what is optimal for the network and changes the
configurations of network elements’ protocol stacks.

Differences from Cross-layer Design

Despite similarities, cognitive networks reach far beyond the scope of cross-
layer designs. The cognitive network can support trade-offs between multiple
goals and in order to do so performs Multiple Objective Optimization (MOO),
whereas cross-layer designs typically perform single objective optimizations.
Cross-layer designs perform independent optimizations that do not account
for the network-wide performance goals. Trying to achieve each goal indepen-
dently is likely to be sub-optimal, and as the number of cross-layer designs
within a node grows, conflicts between the independent adaptations may lead
to adaptation loops [4]. This pitfall is avoided in a cognitive network by jointly
considering all goals in the optimization process.

The ability to learn is another significant difference. The cognitive network
learns from prior decisions and applies the learning to future decisions. Cross-
layer designs are memoryless adaptations that will respond the same way
when presented with the same set of inputs, regardless of how poorly the
adaptation may have performed in the past. The ability to learn from past
behavior is particularly important in light of the fact that our understanding
of the interaction between layers is limited.

Finally, like cognitive radio, the scope of the goals and observations sets
cognitive networks apart from cross-layer design. The observations used by
the cognitive process span multiple nodes and the optimization is performed
with the goals of all nodes in mind, whereas cross-layer design is node-centric.
This global information allows the cognitive process to adapt in ways that
simply are not possible when nodes have limited visibility into the state of
other nodes in the network, as is the case with cross-layer design.

2.2.3 Recent Work

The concept of a cognitive networks is an emerging research field. The idea
of adding cognition to a network has in the past been reserved for individual
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aspects of the network, such as “smart” antennas or “smart” packets. All this
changed with the introduction of the cognitive radio by Mitola in [2]. His
concept of putting intelligence into radio operation caught the imagination
and attention of the research community. Eventually the concept worked its
way from radios into the larger network.

Recent research can be divided into two categories: cognitive radio net-
works and cognitive networks. In the first category, we begin with work from
Mitola and his original thesis on cognitive radio. Here, he mentions how
cognitive radios could interact within the system-level scope of a cognitive
network [2]. Neel continues this line of thinking in [5], where he investigates
modeling networks of cognitive radios as a large, multiplayer game to deter-
mine convergent conditions. This kind of thinking is also observed in Haykin’s
paper on cognitive radio [6], where he examines multiuser networks of cogni-
tive radios as a game.

The focus of cognitive radio networks, as with cognitive radios, is primar-
ily on MAC and physical (PHY) layer issues, but now operating with some
end-to-end objective. In a cognitive radio network, the individual radios still
make most of the cognitive decisions, although they may act in a cooperative
manner. Currently suggested applications for cognitive radio networks include
cooperative spectrum sensing [7,8] and emergency radio networks [9]. From a
more general perspective, Raychaudhuri et al. [10] present an architecture for
cognitive radio networks.

Perhaps the first mention of a cognitive network rather than a cognitive
radio network comes from Clark et al. [11]. Clark proposes a network that can

assemble itself given high level instructions, reassemble itself as
requirements change, automatically discover when something goes
wrong, and automatically fix a detected problem or explain why it
cannot do so.

According to Clark, this would be accomplished with the use of a Knowl-
edge Plane (KP) that transcends layers and domains to make cognitive
decisions about the network. The KP will add intelligence and weight to
the edges of the network, and context sensitivity to its core. Saracco also
observed these trends in his investigation into the future of information tech-
nology [12], postulating that the change from network intelligence control-
ling resources to having context sensitivity will help “flatten” the network by
moving network intelligence into the core and control further out to the edges
of the network.

Cognitive networks differ from cognitive radio networks in that the
action space of the former extends beyond the MAC and PHY layers and
the network may consist of more than just wireless devices. Furthermore,
cognitive networks may be less autonomous than a cognitive radio network,
with the network elements cooperating to achieve goals, using a centralized
cognitive process or a parallelized process that runs across several of the net-
work elements. However, despite these differences, the definition of cognitive
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networks given in Section 2.1.1 encompasses both cognitive radio networks
and cognitive entworks.

More recently, Mähönen discusses cognitive networks in the context of
future Internet Protocol (IP) networks and cognitive trends in a series of
papers. In his earliest paper, he discusses cognitive networks with respect
to future mobile IP networks, arguing that the context sensitivity of these
networks could have as interesting an application as cognitive radios [13]. He
then examines cognitive networks as part of a larger paper on cognitive trends
[14]. He discusses how cognitive radios may be just a logical subset of cognitive
networks. He also brings up the idea of a Network Knowledge Representation
Language (NKRL) to express and communicate high-level goals and policies.

Several research groups have proposed cognitive network-like architectures.
These architectures can be categorized into two objectives: the first centers on
using cognition to aid in the operation and maintenance of the network, while
the second centers on cognition to solve “hard” problems, problems that do
not have a feasible solution other than the use of cognition.

Falling into the first category, the End-to-End Reconfigurability Project II
(E2R II) [15] is designing an architecture that will allow the seamless recon-
figuration of a network in order to allow for universal end-to-end connectivity.
Although E2R II is an ambitious project with many facets, the overarching
goal is one of maintaining connectivity to the user. This is similar to the
goal of the m@ANGEL platform [16], which attempts to provide an cogni-
tive network-like architecture for mobility management in a heterogeneous
network. Both of these architectures are focused on the operation and main-
tenance of 4G cellular and wireless networks.

In contrast, the Center for Telecommunications Value-Chain Research
(CTVR) at Trinity College [17] has presented a proposal for a cognitive net-
work platform that consists of reconfigurable wireless nodes. Although focused
on wireless operation, these nodes are able to solve a variety of problems by
modifying or changing the network stack based on observed network behav-
iors. The possible objectives of these networks can extend beyond mobility
management and connectivity. Similar to the CTVR work but less depen-
dent on the wireless focus, Mähönen proposes a general architecture utilizing
a collaborative Cognitive Resource Manager (CRM) that provides cognitive
behavior from a toolbox of machine learning tools such as neural networks,
clustering, coloring, genetic algorithms, and simulated annealing. The work in
this chapter describes also falls under this objective, attempting to provide a
general cognitive architecture capable of solving a variety of hard problems,
rather than being tied to network operation issues.

2.3 Implementation

In order to synthesize the preceding concepts and components into an
actual cognitive network, we investigate how a cognitive network should
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be implemented. We construct a framework for the cognitive process and
identify the critical features of this architecture.

A common model of cognition is the three-level theory [18]. The model is
often summarized as consisting of behavioral, functional, and physical layers.
The behavioral level determines what observable actions the system produces,
the functional layer determines how the system processes the information
provided to it, and the physical layer comprises the neuro-physiology of the
system.

From this concept, we draw a three-layer framework, with each layer
roughly corresponding to the layers in the model described above. At the
top layer are the goals of the system and elements in the network that define
the behavior of the system. These goals feed into the cognitive process, which
computes the actions the system takes. The SAN is the physical control of the
system, providing the action space for the cognitive process. This framework
is illustrated in Figure 2.2.

In our framework, we consider a cognitive process which consists of one or
more cognitive elements, operating in some degree between selfish autonomy
and full cooperation. If there is a single cognitive element, it may still be
physically distributed over one or more nodes in the network. If there are
multiple elements, they may be distributed over a subset of the nodes in the
network, on every node in the network, or several cognitive elements may
reside on a single node. In this respect, the cognitive elements operate in a
manner similar to software agents.

Fig. 2.2. The cognitive network framework.
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2.3.1 User/Application/Resource Requirements

The top-level component of the cognitive network framework includes the
end-to-end goals, Cognitive Specification Language (CSL) and cognitive
element goals. Without end-to-end goals guiding network behavior, undesired
consequences may arise. For instance, optimizing a network element without
an end-to-end scope can cause a negative effect on the performance elsewhere
in the network or node. This is a problem with many cross-layer designs
and is explored in some depth in [4], which illustrates unintended end-to-end
interactions in a MAC/PHY cross-layer design.

Like most engineering problems, there is likely to be a trade-off for every
goal optimized on. When a cognitive network has multiple objectives it will
not be able to optimize all metrics indefinitely, eventually reaching a point at
which one metric cannot be improved without adversely affecting another. In
order to determine this Pareto optimal front (the set of actions from which
no goal can be improved without worsening another), each cognitive element
must have an understanding of all end-to-end goals and their constraints.

To connect the goals of the top-level users of the network to the cognitive
process, an interface layer must be developed. In a cognitive network, this role
is performed by the CSL, providing behavioral guidance to the elements by
translating the end-to-end goals to local element goals. Less like the RKRL
proposed by Mitola for cognitive radio and more like a QoS specification lan-
guage [19], the CSL maps end-to-end requirements to underlying mechanisms.
Unlike a QoS specification language, the mechanisms are adaptive to the net-
work capabilities, as opposed to fixed. Furthermore, a CSL must be able to
adapt to new network elements, applications, and goals, some of which may
not even be imagined yet. Other requirements may include support for distrib-
uted or centralized operation, including the sharing of data between multiple
cognitive elements.

The scope of the cognitive network is broader than that of the individ-
ual network elements; it operates within the scope of a data flow, which may
include many network elements. For a distributed cognitive process, the cog-
nitive elements associated with each flow or network element may act selfishly
and independently (in the context of the entire network) to achieve local goals,
or act in an altruistic manner to achieve network-wide goals. The job of con-
verting the end-to-end goals to these local element goals is often a difficult
problem.

2.3.2 Cognitive Process

There does not seem to be a common, accepted definition of what cognition
means when applied to communication technologies. The term cognitive, as
used by this chapter, follows closely in the footsteps of the definition used by
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Mitola in [2] and the even broader definition of the FCC. The former incorpo-
rates a spectrum of cognitive behaviors, from goal-based decisions to proac-
tive adaptation. Here, we associate cognition with machine learning, which
is broadly defined in [20] as any algorithm that “improves its performance
through experience gained over a period of time without complete informa-
tion about the environment in which it operates.” Underneath this definition,
many different kinds of artificial intelligence, decision making, and adaptive
algorithms can be placed, giving cognitive networks a wide scope of possible
mechanisms to use for learning.

Learning serves to complement the objective optimization part of the cog-
nitive process by retaining the effectiveness of past decisions under a given
set of conditions. Determining the effectiveness of past decisions requires a
feedback loop to measure the success of the chosen solution in meeting the
objectives defined. This is retained in memory so that when similar circum-
stances are encountered in the future, the cognitive process will have some
idea of where to start or what to avoid.

The effect of a cognitive process’s decisions on the network performance
depends on the amount of network state information available to it. In order
for a cognitive network to make a decision based on end-to-end goals, the
cognitive elements must have some knowledge of the network’s current state
and other cognitive element states. If a cognitive network has knowledge of
the entire network’s state, decisions at the cognitive element level should be at
least as good, if not better (in terms of the cognitive element goals) than those
made in ignorance. For a large, complex system such as a computer network,
it is unlikely that the cognitive network would know the total system state.
There is often a high cost to communicate this information beyond those
network elements requiring it, meaning a cognitive network will have to work
with less than a full picture of the network status.

Filtering and abstraction may be used to further reduce the amount of in-
formation that must be exchanged and to avoid unnecessary triggering of the
cognitive process. Filtering means that observations made by the node may be
held back from the cognitive process if they are deemed irrelevant. Thus, the
nodes themselves make some determination of what is important to the cog-
nitive process. Filtering rules may be identified at design time with additional
rules specified in real-time as the cognitive process determines its sensitivity
to various types of observations and disseminates filtering rules accordingly.
The goal of abstraction is to reduce the number of bits required to represent
an observation. Observations or collections of observations made by a node are
reported to the cognitive process at a higher level of abstraction than what is
available within the node. Abstractions may also be specified at design time
with real-time adaptations by the cognitive process. The reductionism result-
ing from filtering and abstraction carries risk because it may mask information
that the cognitive process needs to operate correctly. Therefore, care should
be taken in defining the abstractions or filtering.
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2.3.3 Software Adaptable Network

The SAN consists of the Application Programming Interface (API), modifiable
network elements, and network status sensors. The SAN is really a separate
research area, just as the design of the SDR is separate from the development
of the cognitive radio, but at a minimum the cognitive process needs to be
aware of the API and the interface it presents to the modifiable elements.
Just like the other aspects of the framework, the API should be flexible and
extensible. Continuing the analogy with SDKs, an existing system that is
analogous to the API is the Software Communications Architecture (SCA)
used in the Joint Tactical Radio System (JTRS).

Another responsibility of the SAN is to notify the cognitive process of the
status of the network (to what level and detail is a function of the filtering
and abstraction being applied). The status of the network is the source of
the feedback used by the cognitive process, and is composed of status sen-
sor observations and communication with other cognitive elements. Possible
observations may be local, such as bit error rate, battery life or data rate,
non-local, such as end-to-end delay and clique size, or compilations of differ-
ent local observations.

The modifiable elements can include any object or element used in a net-
work, although it is unlikely that all elements in a SAN would be modifiable.
Each modifiable element should have public and private interfaces to the API,
allowing it to be manipulated by both the SAN and the cognitive process.
Modifiable elements are assumed to have a set of states that they can operate
in, and a “solution” for a cognitive process consists of a set of these states
that, when taken together, meet the end-to-end requirements of the system.
At any given instant the set of all possible combinations of states S can be par-
titioned into two subsets. The first, S′, contains all possible combinations of
sets that meet the end-to-end requirements and the second, S̄′, consists of all
combinations that do not meet these requirements. Of those in S′, some may
meet the requirements better than others, making them preferred solutions.

A cognitive network attempts to reach a set of states S′. This means
that, should the network be in a state in S̄′, or some sub-optimal state in
S′, the cognitive process attempts to move the system state to an optimal
solution. With cognitive control over every element, the cognitive process can
potentially set the system to any state; an ideal cognitive process could set the
state to the optimal solution. If the system has only a few points of cognitive
control, or chooses not to exercise all its control, then the cognitive process
has to use the functionality and interactions of the non-cognitive aspects of
the network to set the system state. Like the hole at the bottom of a funnel,
certain system states will be basins of attraction, pulling the system towards
them from a variety of starting states. If a system has several attractors and
some are more optimal than others, then a few points of cognitive control may
be enough to draw the system out of one attractor and into another. This is
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analogous to a watershed, in which moving the source of water a few miles
may be enough to change what river the water will finally flow into.

2.4 A Cognitive Network for Multicast Lifetime

To illustrate the effect of these critical design decisions on a network, we
present a cognitive network approach to maximizing a multicast flow’s life-
time. By investigating even a simple cognitive network for a real-world prob-
lem, some of the subtleties of the design process can be explored. In this
manner, the following cognitive network problem should be viewed as an
illustrative case study.

Many factors may affect the expected lifetime of a network connection in a
wireless network. For instance, traffic congestion can cause timeouts in upper
layer protocols, interference can cause loss of connectivity at the PHY layer,
and mobility can cause unexpected disconnections in traffic routing. However,
for mobile and portable devices, one of the chief factors in determining the
lifetime of a connection is the energy remaining in the batteries of the mobile
nodes.

This example focuses on a cognitive network with control over the trans-
mission power, antenna directionality, and routing tables of the network nodes.
This is not the first investigation into lifetime routing in wireless networks; a
large body of work on power-efficient routing exists in the literature. Gupta’s
survey [21] provides an excellent comparison of several power-efficient mul-
ticast algorithms for omnidirectional antennas. Weiselthier et al. [22] have
examined this problem using directional antennas. A complete review of the
related literature and an investigation using Mixed Integer Linear Program
(MILPs) for determining the optimal lifetimes can be found in [23]. Although
primarily designed to illustrate the cognitive network concept, this work is
the first to provide a distributed, cognitive network approach to multicast
lifetime routing that incorporates energy efficiency considerations, directional
antennas, and a Signal to Interference and Noise Ratio (SINR) sufficiency
requirement.

2.4.1 Problem Description

A wireless network is made up of a collection of network elements with vary-
ing energy capacity. Some elements may be battery powered, with limited
capacity, while others may be less mobile, with large, high capacity batter-
ies. The lifetime of a data path, however, is limited by the radio utilizing the
largest fraction of its battery capacity. By minimizing the utilization of this
bottleneck radio, the lifetime of the path can be maximized. Furthermore, we
consider a network where radios are equipped with directional antennas, which
are useful to reduce interference, improve spatial multiplexing, and increase
range.
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We model a network consisting of a set of radios N = {1, 2, . . . , n}, in
which the objective is to create a maximum lifetime multicast tree between
source S and destination set D. As described earlier, the cognitive network
controls three modifiable network parameters: the radio transmission power
(contained in the elements of vector pt), the antenna directionality (angles are
contained in the elements of vector φ), and element routing tables (contained
in each node of the multicast tree T ). The states of the modifiable elements
are part of the action set A, of which the action vector a contains the current
state of each modifiable element.

In the model used here, the lifetime of a radio is inversely proportional to
the utilization of the radio’s battery,

µi =
pti
cai

(2.1)

where pti is radio i’s transmission power and cai is the remaining energy
capacity of its battery. The lifetime of a data path is limited by the radio
utilizing the largest fraction of its battery capacity, so over the entire multicast
tree T , the lifetime will be inversely proportional to the utilization of the max-
utilization radio

µT = max
j∈T

{µj} (2.2)

The network consists of radios with fully directional antennas in receive
mode2 (each element transmits omnidirectionally and receives directionally)
with a fixed beamwidth θ that can take on a boresight angle φ ∈ [0, 2π).
Figure 2.3 illustrates the operation of an ad-hoc network with directional
antennas in receive mode.

When radio i transmits, the signal experiences gain factor gb within the
main beam of the antenna [25]

Omni directional transmit

Directional receive

Directional Receive Multicasting Multicast Tree

Fig. 2.3. The directional receive multicast operation. The shaded areas extending
from the radios represent regions of increased gain.

2 An argument for using directional reception rather than transmission can be
found in [24].
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gb =
2π

θ
(2.3)

Some energy leaks outside the main beam in sidelobes. The fraction that ends
up in the beam is pct ∈ (0, 1) and the fraction outside the beam is (1 − pct).
We also consider a path loss attenuation factor, proportional to

gpij =
1

d(i, j)α
(2.4)

where d(i, j) is the euclidean distance between source i and destination j and
α is the path loss exponent. Combining these gains and attenuations, the
overall gain from a transmission by radio i received at radio j is

gij(φj) =

{
gb · gpij · pct φj ∈ a(i, j) ± θ

2

gpij · (1 − pct) otherwise
(2.5)

where a(i, j) is the angular function between radios i and j.
A radio j can correctly receive information from radio i if the power re-

ceived from the desired transmitter is greater than all other power and noise
received by some SINR factor. We define the vector pr to be the power re-
ceived at every radio in the tree from their parent radio,

prj(pti, φj) = pti · gij(φj) (2.6)

There is an entry in this vector for every radio in the tree, with the exception
of the source radio (|pr| = |T | − 1). We then define vector no to be the
minimum required power to overcome the interference and noise received at
every element,

noj(pt, φj , T ) =

⎛
⎝∑

k �=i

prk(pti, φj) + σj

⎞
⎠ γj (2.7)

where σj is the thermal noise and γj is the SINR requirement for a particular
radio. The vectors pr and no combine to give the network constraint,

pr − no ≥ 0 (2.8)

2.4.2 Cognitive Network Design

The cognitive network framework encompasses a wide spectrum of possible
implementations and solutions. This approach allows the framework to be a
method for approaching problems in complex networks, rather than a specific
solution. The framework sits on top of existing network layers, processes, and
protocols, adjusting elements of the SAN to achieve an end-to-end goal. In this
section, we show how a cognitive network that solves the multicast lifetime
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Fig. 2.4. The components of the multicast lifetime cognitive network as they fit
into the framework.

problem fits into the framework. We examine each layer, showing how the
requirements layer provides goals to the cognitive elements, how the cognitive
process performs the feedback loop, and identify the functionality of the SAN.
The ideas in this section are illustrated in Figure 2.4.

The cognitive process consists of three cognitive elements that distribute
the operation of the cognitive process both functionally and spatially: Power-
Control, DirectionControl, and RoutingControl. PowerControl adjusts the PHY
transmission power (pti), DirectionControl adjusts the MAC spatial operation
(φi), and RoutingControl adjusts the network layer’s routing functionality (T ).
The SAN network status sensors provide each cognitive element with the
knowledge of each radio’s battery utilization in its k-hop neighborhood. The
k-hop neighborhood of a radio is defined to be every radio reachable in the
routing tree via at most k hops, following the routing tree both up and down
branches.

Requirements Layer

The cognitive network investigated here is associated with a single objective
optimization as its end-to-end goal. As such, the performance of an action
vector is only dependent on the life-span of the multicast flow. The end-to-
end objective is defined in Equation 2.9 as a cost function, where the lifetime
of a flow is increased as C(a) is minimized.
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C(pt, φ, T ) =

{
µT pr − no ≥ 0
∞ otherwise

(2.9)

Each of the modifiable elements affects the calculation of this cost: transmis-
sion power affects the lifetime directly; antenna orientation and routing table
influence the lifetime indirectly by affecting the required transmission power.

The requirements layer transforms the end-to-end objective into a goal
for each cognitive element through the CSL. Although these objectives are
localized (each element only adapts a single modifiable element) the state of
all modifiable elements affects the cognitive element’s performance.

PowerControl’s objective is to minimize the transmission power on every
radio subject to the system constraint. This means that a radio will attempt to
transmit at the minimum power that connects it to all of its children through
the local control of pti. The objective can be represented by the utility function

uPC

i (pt) = −
(

max
j∈Ci

{
nok

gij

}
− pti

)2

(2.10)

which is maximized when the transmitting radio has exactly the power needed
to reach the child radio with the greatest noise and least gain factor. Ci is the
set of child radios that receive from radio i in the multicast tree.

The objective of DirectionControl is to maximize the receiving radio’s SINR
by controlling the directional angle of the antenna beam φi locally at every
antenna. One form that the utility can take is

uDC

i (pt, φi) = pri − noi (2.11)

By rotating the directional antenna, the radio can increase the gain from the
parent radio, while attenuating interfering signals.

The objective of RoutingControl is to minimize each radio’s battery uti-
lization by manipulating the routing tree (T ) used by the network. The utility
can be expressed as

uRC

i (pti) =
1
µi

(2.12)

By manipulating the children radios that it has to transmit to, a radio can
reduce its transmission power and battery utilization.

Cognitive Process

The cognitive process consists of the three cognitive elements described above,
each operating on every radio in the network. In this section, we discuss the
strategies utilized by these elements to achieve the above objective goals and
identify the critical design decisions used by each cognitive element.
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Algorithm 1 Relax(pt, φ, T ) → p̂t

1: while not at p̂t do
2: for i = 1 . . . n do
3: pti = maxj∈Ci{

noj

gij
}

4: end for
5: end while

PowerControl The PowerControl cognitive element uses a strategy called Re-

lax. Relax moves the transmission power of the elements of a tree to a
minimum but sufficient power state (referred to as p̂t) for a given tree struc-
ture. Nodes do this by increasing or decreasing transmission power until it
just meets the SINR sufficiency requirements of all their children. This means
that parent node i will iteratively increase or decrease its transmission power
according to the amount of interference and noise observed by the child j with
the maximum amount of noise and interference. Algorithm 1 describes this
process more formally.

Relax is similar to the asynchronous iterative power control algorithm
presented by Yates [26]. That paper proved, for a cellular network consisting
of multiple handsets communicating with a base-station, if Equation 2.8 is
feasible (meaning that there exists a solution), Relax will find the optimal
p̂t. Yates’ work is for the reverse of the problem we consider – a cellular
network is comprised of many nodes transmitting to a single base station. In
contrast, our work considers a multicast wireless network with a set of parent
nodes transmitting to many children. However, it is easy to show Yate’s results
still hold.

DirectionControl The second cognitive element’s behavior is DirectionCon-
trol. DirectionControl moves the directional antenna to the orientation that
maximizes the received SINR from a node’s parent node. There are several
direction-finding algorithms in the literature [27] and DirectionControl can im-
plement one of these. If a node is a part of the multicast routing tree, it directs
its antenna such that the power received from the parent is maximized with
respect to the amount of interference and noise. If a node is not part of the
multicast tree, it directs the antenna towards any source from which it can
receive with the greatest SINR. For clarity, we will delineate these two tree
structures: the first, called the functional tree, consists of just elements in
the multicast routing tree and the second, called the structural tree, includes
every element in the system that can receive a signal that meets the SINR
requirement.

RoutingControl RoutingControl attempts to minimize the utilization of the
radio batteries by approximating a Steiner tree for the utilization metric.
RoutingControl uses the ChildSwitch strategy described in Algorithm 2.
ChildSwitch begins by determining if it is operating on the max-utilization
radio (the radio with maximum battery utilization) of its k-hop neighborhood,
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Algorithm 2 ChildSwitch(pt, φ, T ) → (p̂t, φ̂, T ′)
1: if µi = maxn∈Ni{µn} then {is on a max-util. node}
2: µminmax = µi {record the config. as the min-max}
3: minmax = i
4: j = argmaxc∈Ci

{noc} {record the max-power child}
5: for n ∈ Ni n �= j; n /∈ Bj do {every valid neighbor}
6: Cn = Cn ∪ {j} {add max-power child}
7: φ̂ = DirectionControl(φ)
8: p̂t = Relax(pt)
9: µmax = argmaxn∈Ni

{µn} {record max-util.}
10: if µmax < µminmax then {max-util. is least}
11: µminmax = µmax {record it as the min-max}
12: minmax = max
13: end if
14: Cn = Cn\{j} {remove max-power child}
15: end for
16: Cminmax = Cminmax ∪ {j} {change to min-max config.}
17: end if

by comparing its battery utilization against every k-hop neighbor’s battery
utilization. If it is, the radio becomes the control-radio and takes control over
the routing tables of every element in the k-hop neighborhood. It then iden-
tifies which of the children radios in the functional tree requires the greatest
amount of power to reach (the max-power child). The control-radio then at-
tempts to detach the max-power child from itself and re-attach it as the child
of another radio (by changing the routing table of a k-hop neighbor so that it
becomes the new parent) in the k-hop neighborhood, in order to reduce the
k-hop neighborhood’s maximum utilization.

Valid choices for a new parent for the max-power child include all radios in
the k-hop neighborhood of the structural tree, except for children of the max-
power child. By using the structural tree rather than the functional tree, new
radios in the network can be brought sensibly into the functional tree. After
assignment, ChildSwitch waits until Relax converges and DirectionControl
selects the correct beam angle. When Relax converges, ChildSwitch on the
control-radio compares the utilization of all radios in the k-hop neighborhood
against its initial utilization. The process is then repeated for the remaining
valid radios, with the control-radio remembering the best (minimum) max-
utilization configuration, and upon completion setting the routing table to
this configuration.

This process repeats indefinitely until the max-utilization control-radios
are no longer able to move their max-power children to configurations that
lower the max-utilization radio of their k-hop neighborhood. In a syn-
chronous network, in which only one RoutingControl control-radio performs
ChildSwitch at a time, the network will (except in rare cases) converge to
a single set of max-utilization radios.
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Software Adaptable Network

The SAN provides an interface to the three modifiable network elements and
the status of the network. The reported status is the local noise, maximum
transmission power required to reach its children, k-hop battery utilization
and k-hop routing tree.

The required transmission power, battery utilization of child radios, and
routing tree status can be discovered and reported via a variable power hand-
shaking scheme. In a synchronous manner, radios one by one send a Hello

message addressed to all children. The children each responded with an Ack

message to the parent. The parent then decreases its transmission power and
sends a new Hello message until it fails to receive an Ack from some child.
The parent radio then stops decreasing its power and returns to the previous
power level, which is the maximum transmission power required to reach all
its children. These Hello and Ack messages can also transfer information
about each radio’s battery utilization and the routing tree within the k-hop
neighborhood. In contrast to these non-local measurements, the amount of
local noise can be calculated through the local SINR measurement.

2.4.3 Results

To determine the effectiveness of this cognitive network, we developed a sim-
ulation of the cognitive network. The simulation was written in Matlab, and
consisted of nodes placed with a uniform random distribution in a square 2-D
map with density 0.1 nodes/unit2. There is a single source node and a variable
number of receivers. The beam width θ is 30◦, the path loss exponent α is 2,
and 30% of the transmitted power is assumed to leak out through sidelobes
(1−pct). Each wireless node was given a battery with a random capacity (cai)
uniformly distributed between 0 and 300 units of energy. The SINR sufficiency
requirement is set to 1, meaning that the received power must be greater than
the noise and interference to satisfy Equation 2.8.

The normalized lifetime of a path is calculated as the ratio of the lifetime
obtained by the cognitive network to the optimal lifetime for the same set
of source/destinations, capacities, and node positions. The optimal lifetime
was determined using Wood’s MILP [24]. Knowing the optimal solution is
useful, since it allows a true “apples-to-apples” comparison between different
scenarios, resulting in an accurate gauge of how effective the cognitive network
is.

Underlying the cognitive network, one of two different generic multicast
routing algorithms was used. The first, Greedy, uses a greedy algorithm
to create the multicast tree. Greedy forms the multicast tree from the
source node, adding minimum utilization nodes until a spanning tree has
been formed. Utilization is estimated for every pair of nodes as the ratio of
the (non-interference) transmission power required to reach each node to the
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Fig. 2.5. Normalized lifetime of 30 node networks before and after cognitive network
improvement. 1-Hop knowledge is used here.

node’s battery capacity. Greedy then prunes off branches until it has the
minimum tree required to reach every destination. The other multicast algo-
rithm used is Star, which implements a 1-hop broadcast star from the source
to every destination.

For a given scenario (consisting of node count, location, and battery capac-
ity) both Greedy or Star were run, individually. The resultant tree topology
and parent/child information from each algorithm were handed to Relax and
DirectionControl, which determine pti and φi, maximizing the lifetime for this
route. The full cognitive process, including RoutingControl was then run on
the route determined by Greedy and Star until it converged to a single set
of max-utilization nodes. The lifetime of the resultant tree was then calcu-
lated. Finally, both the non-cognitive and cognitive lifetimes for a scenario
were compared against the optimal lifetime obtained from the MILP, provid-
ing a normalized lifetime in (0, 1), where 1 represents an optimal lifetime for
that particular scenario.

These performance improvements are illustrated quantitatively in
Figure 2.5 and qualitatively in Figure 2.6. Figure 2.5 illustrates the improve-
ment in average lifetime produced by the cognitive process, and Figure 2.6
shows an example multicast tree and corresponding lifetime, both with and
without the cognitive process.

These results show that the simplicity of Star leads to sub-optimal per-
formance, with at worst case less than 40% of the average lifetime of Greedy.
However, it also confirms that the cognitive network can make a significant
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Fig. 2.6. Multicast tree topology and lifetime (source is circle, destinations are stars)
for a sample scenario as first chosen by Greedy (left) and then after improvement
by cognitive element adaptations (right).

improvement on the average lifetime of the flow by using a 1-hop neighbor-
hood – over 125% improvement in the Star case. The Greedy algorithm
alone achieves much longer lifetimes, but the cognitive network is still able to
improve it by 5–15%. In both routing algorithms, lifetimes remained steady
or decreased as the number of multicast receivers increased. The cognitive
network was able to improve the lifetime of the connection for all receiver
counts and neighborhood sizes.

2.5 Future Questions and Research Areas

The previous sections make a case for the “what, why, and how” of cognitive
networks. We now examine major issues that need to be addressed in order
to move from concept to reality.

There is an implicit assumption in this chapter that the cognitive network
implements configuration changes synchronously. The details of actually mak-
ing this happen with high reliability are likely to be complex. The implications
of nodes’ switching configuration at different times may be worse than if no
adaptation had been performed at all. Also, the varying topology of the net-
work means that not all nodes will receive notification of configuration changes
at the same time. A possible approach is to require nodes to be synchronized
to some common time reference and to issue configuration changes with re-
spect to the time reference. However, this adds complexity to the nodes and
still does not guarantee that messages will not be lost, resulting in stranded
nodes. It also forces the network to delay its adaptation to the conditions that
spawned the configuration change.

Due to the autonomy of each, there is potential conflict between what a
cognitive radio and a cognitive network each control if there is not an inte-
grated architecture. One approach is to turn all control over to the cognitive
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network, but this is probably unwise. The reason is that the cognitive net-
work has to limit its observations as much as possible just to make cognitive
processing for a network feasible. This leaves much detailed local information
out of the cognitive network picture. This detailed local information may be
used by the cognitive radio to further optimize its performance outside the
bounds of what is controlled by the cognitive network. To do this, the cogni-
tive radio must know what it is allowed to change and what is in the hands of
the cognitive network. A potential solution is to allow the cognitive network to
establish regulatory policy for the cognitive radio in real-time, leaving the cog-
nitive radio to perform further optimization under the constraints established
by the cognitive network policy.

2.6 Conclusion

This chapter laid the groundwork for the concept of a cognitive network and
proposed a definition for the term. Additionally, the cognitive network concept
was compared against both cognitive radio and cross-layer design. Finally,
a framework for cognitive networks was presented, and critical themes and
issues were identified in the design and implementation of a cognitive network.
While a significant amount of work remains to be done to make cognitive
networks a reality, the rising complexity of networks and the need to manage
this complexity makes the concept timely and attractive.

Although computer networks are becoming increasingly ubiquitous, the
ability to manage and operate them is not becoming increasingly easier. Cogni-
tive networks, with their promise to self-adapt to meet end-to-end objectives,
are an emerging technology that will deal with this increasing complexity.
This chapter presented three critical properties that designers need to trade
off when architecting a cognitive network. These critical properties will pro-
vide design guidelines for future research into and implementation of cognitive
networks.
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