Fracture Testing of a Layered Functionally Graded Material

Mike Hill
Doug Carpenter
Zuhair Munir
Jeff Gibeling
University of California, Davis

Glaucio Paulino
University of Illinois, Urbana-Champaign
Outline

- Material
 - Ti/TiB functionally graded material
- $K_I - R$ fracture testing
- Effect of precracking
 - Three methods attempted
- Residual stress measurement
- Correction of $K_I - R$ results for residual stress
 - Weight function
 - Superposition
Material

- Manufactured by Cercom (Vista, CA)
 - Ti and TiB₂ powders
 - Six Ti/TiB₂ mixtures on CP Ti plate
- Processing
 - Hot press (1578K, 13.8 MPa)
 - Ti + TiB₂ → TiB (little residual TiB₂)
- Ceramic/Metallic
 - Modulus range: 107 (Ti) to 313 (15Ti/85TiB) GPa
 - Toughness range: 134 (Ti) to 6.5 (Pure TiB) MPa·m¹/²
R-curve Fracture Testing

- Standard SE(B) tests (E1820-96)
 - Nearly full thickness samples
 - $W = 13.6$ to 14.7 mm
 - $S \approx 4 \ W$
 - $a_0 \approx 0.36$ to $0.4 \ W$
 - $B \approx 0.5 \ W$

- Crack driving from TiB-rich side
- Optical crack length measurement
- Data reduction based on monolithic material
- Results for three precrack conditions
 - No precrack, compression, reverse bending
Fracture Testing - Precracking

- Precracking methods
 - Crack-tip in tension (metals)
 - Uncontrollable crack growth (pop-in)
 - Uniform compression (ceramics)
 - High loads required to initiate crack
 - Global modulus changed 33%
 - Damage: Yielding of Ti, Debonding of TiB in Ti matrix, Microcracking of TiB
 - Reverse bending
 - Controllable crack growth, no modulus change

- Effect on toughness?
Fracture Testing - Results

- **Rising R-curve**

- **Precracking affects toughness**
 - Uniform compression → 40% lower
 - Early failure of sample without precrack
Toughening Mechanisms

- Intrinsic (crack-tip) toughening
- Crack branching and bridging

(Layer 6, TiB in Ti matrix)
Residual Stress

- FGM contains residual stress (RS)
- Remove RS effect from $K_I - R$ measurement
 - Measure residual stress through thickness
 - Use weight function to find K_{RS}
 - Use superposition to find material toughness
 \[K_{material} \approx K_{measured} + K_{RS} \]
- Measure RS using the compliance method
 - Slot incrementally
 - Measure strain release
 - Back-calculate to find RS
Compliance Method

- Assumes elastic stress release
 - Released strain a function of residual stress
- Express unknown RS in Legendre basis
 - \(\sigma_{RS}(x) = \sum_{i=2,m} A_i P_i(x) \)
 - Strain can be found for known stress (FEM)
 - Find strain for basis functions using FEM
 - Include property variation for FGM
- Find basis amplitudes from measured strain
 - \(\mathbf{\varepsilon} = \mathbf{C} \mathbf{A} \quad \mathbf{A} = (\mathbf{C}^T \mathbf{C})^{-1} \mathbf{C}^T \mathbf{\varepsilon} \)
Measured Residual Stress

- Measured Strain
- Strain Fit
- Residual Stress

[Diagram showing measured residual stress and strain fit with data points and fitted curves.]
Residual Stress Corrected R-curve

- $K_{RS} < 0$ (toughness overestimated)

- Initial *material* toughness 35% lower
Conclusions

- Precracking method affects toughness
 - Tension fatigue uncontrollable
 - Uniform compression damaging
 - Reverse bending produced desired results

- FGM exhibits rising R-curve behavior
 - Intrinsic toughness
 - Crack branching
 - Crack bridging

- R-curve corrected for residual stress
 - Residual stress measured, K_{RS} computed
 - Superposition of K_{RS} and $K_{measured}$
 - 34% change in brittle region