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Abstract The quaternion representation for spatial Pythagorean–hodograph (PH) curves
greatly facilitates the formulation of basic algorithms for their construction and
manipulation, such as first–order Hermite interpolation, transformations between
coordinate systems, and determination of rotation–minimizing frames. By virtue
of their algebraic structures, PH curves offer unique computational advantages
over “ordinary” polynomial curves in geometric design, graphics, path planning
and motion control, computer vision, and similar applications. We survey some
recent advances in theory, algorithms, and applications for spatial PH curves,
and present new results on the unique determination of PH curves by the tangent
indicatrix, and the use of generalized stereographic projection as a tool to obtain
deeper insight into the basic structure and properties of spatial PH curves.

Keywords: Pythagorean–hodograph curves; quaternion representation; rotation–minimizing
frame; arc length; elastic energy; Hermite interpolation; tangent indicatrix.

1. Introduction

Pythagorean–hodograph (PH) curves [10, 19] incorporate special algebraic
structures that offer computational advantages in diverse application contexts,
such as computer aided design, computer graphics, computer vision, robotics,
and motion control. The planar PH curves are most conveniently expressed in
terms of a complex variable model [7], which helps facilitate key constructions
[1, 8, 15, 18, 24, 30]. To achieve a sufficient–and–necessary characterization
for spatial PH curves, a quaternion model is required [4, 11]. Our goal in this
paper is to survey new algorithms that employ this representation [3, 9, 12–14,
26]; to describe new results on the unique correspondence between PH curves
and tangent indicatrices; and to highlight important open problems concerning
the theory, construction, and applications of spatial PH curves.

Among the key distinguishing features of any PH curve ������� — as distinct
from an “ordinary” polynomial curve — we cite the following:
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The cumulative are length � ����� is a polynomial in the curve parameter � ,
and the total arc length can be computed exactly (i.e., without numerical
quadrature) by rational arithmetic on the curve coefficients [6].

Integral shape measures, such as the elastic energy — the integral of the
square of curvature — are amenable to exact closed–form evaluation [8].

PH curves admit real–time interpolator algorithms that allow computer
numerical control (CNC) machines to accurately traverse curved paths
with speeds dependent upon time, arc length, or curvature [16, 21, 31].

The offsets (or parallels) to any planar PH curve admit an exact rational
parameterization — likewise for the “tubular” canal surfaces that have
a given spatial PH curve as the “spine” curve [11, 19, 20].

An exact derivation of rotation–minimizing frames (which eliminate the
“unnecessary” rotation of the Frenet frame in the curve normal plane)
is possible for spatial PH curves [9] — these involve logarithmic terms;
efficient rational approximations are available [13] as an alternative.

PH curves typically yield “fair” interpolants (with more even curvature
distributions) to discrete data — as compared to “ordinary” polynomial
splines or Hermite interpolants [1, 8, 18, 20, 30].

Our plan for this paper is as follows. After reviewing basic properties of the
quaternion formulation for spatial PH curves in

�
2, we briefly summarize in�

3 the first–order Hermite interpolation problem using this form. Computation
of rotation–minimizing frames on spatial PH curves is then discussed in

�
4. A

remarkable property of PH curves is newly identified in
�
5: they are uniquely

determined (modulo translation and uniform scaling) by the tangent indicatrix,
the curve on the unit sphere describing the variation of the tangent vector. In�
6 we discuss the generalized stereographic projection as a means to obtain

deeper insight into the structure of the space of spatial PH curves. Throughout
the paper we identify important open problems in the theory, algorithms, and
applications of spatial PH curves that deserve further investigation. Finally,

�
7

summarizes the recent advances and makes some closing remarks.

2. Quaternion formulation of spatial PH curves

The defining characteristic of a Pythagorean–hodograph curve � ��� � in ���
is the fact that the coordinate components of its derivative or hodograph ��� �����
comprise a Pythagorean � –tuple of polynomials — i.e., the sum of their squares
coincides with the perfect square of some polynomial � ��� � . Satisfaction of this
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condition requires the incorporation of a special algebraic structure in � � ��� � ,
dependent on the dimension � of the space.1

The polynomial � ����� defines the parametric speed of the curve ����� � — i.e.,
the rate of change

��� �
�� �

of its arc length � with respect to the curve parameter � . The fact that � ��� � is a
polynomial (rather than the square–root of a polynomial) in � is the source of
the advantageous properties of PH curves.

In the planar case ( ����� ), a sufficient–and–necessary condition [19] for
� � ����� � ��� � ��� �	��
 � ��� ��� to be Pythagorean, with ��
 � ��� � ��� �	��
�� ��� ��� ��
�������������� ,
can be expressed as

� � � ��� ����
 ��� ����� � � � ��� � � !
"#$ #% � � ��� � �'& � ��� �)(+*,� �����
 � ��� � �-�.& �����/* �����
� ��� � �'& � ��� ����*,� �����

for some polynomials & ����� , * ��� � . The complex–variable model [7] for planar
PH curves succinctly embodies this condition: identifying the point ���0��
 � with
the complex number �1�324
 , the Pythagorean hodograph structure is ensured
by writing � � ��� � �65 � ����� for any complex polynomial 5 ��� � �6& �����7�'24* ��� �
with ��
 � � & ��� �	��* ��� ��� �8
������������9� . The complex formulation greatly simplifies
many basic algorithms [1, 8, 15, 18, 24, 30] for planar PH curves.

In the spatial case ( �:�-; ), we need2 four polynomials [4, 5] to characterize
the Pythagorean nature of a hodograph � � ����� � ��� � �����	��
 � �����	��< � ��� ��� . Namely,

� ��� �������=
 ��� �������>< ��� ����� � � � ��� � � !
"###$ ###%
� � ��� � �'& � ��� ����*,� �����.(@?A� �����)(CBD� ��� �
 � ��� � �-�FEG& �����GB ��� �0��* �����H? �����9I< � ��� � �-�FE * ��� �GB �����7( & ��� �H? ��� �9I
� ��� � �'& � ��� ����*,� �����J�K?A� �������LBD� ��� �

for some polynomials & ����� , * ��� � , ? ����� , B ��� � . The quaternion formulation for
spatial Pythagorean hodographs, first introduced in [4], provides a very elegant
and succinct embodiment of this structure. Quaternions can be represented as
pairs of the form MN� �POA��Q � and RS� �UTV��W � where OA�XT are the scalar parts
and Q � O�Y�Z��@O9[]\A�^O,_4` , W � T	Y�Z4�@T	[G\a�@Tb_4` are the vector parts. For brevity,
we often simply write O for the “pure scalar” quaternion �POc�Xd � and Q for the

1PH curves have also been defined in the Minkowski metric of relativity theory [4, 29]: such “MPH curves”
play an important role in reconstructing the boundary of a shape from its medial axis transform.
2An earlier formulation [20] employing only three polynomials provides a sufficient, but not necessary,
characterization of spatial Pythagorean hodographs (this characterization is not rotation–invariant).
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“pure vector” quaternion ��� ��Q � . The sum and product of M , R are given by

M � R � �PO �LT ��Q � W �A� M RL� �PO,T ( Q��VW7��O W �LTaQ � Q�� W ���
Note that the product is non–commutative (i.e., R7M	��'M R in general).

Now if M ����� � & ��� ��� * ��� �]Z � ? ��� � \��:B �����G` is a quaternion polynomial, andM�
 ��� � �'& ��� �.(+* �����]ZJ( ? ����� \ ( B �����G` is its conjugate, the product

� � ��� � � M ����� Z M 
 ����� � EG& � ��� ����* � ��� �)(^? � ��� �)( B � �����9I Z� �FEG& �����GB ��� �0��* �����H? ��� �9I/\@� �FE * ��� �GB ����� ( & ��� �H? ��� �9IV` (1)

generates the PH structure in �
� (\ or ` can be interposed between M ��� � , M�
 �����
in place of Z , yielding a permutation of & ����� , * ����� , ? ����� , B ��� � ). We may express
(1) as � � ����� ��� M ����� � ��� ��� � Z � 
 ��� � , where � M ��� � � � �6M ����� M 
 ����� and � ��� � �
� 
��������� ��� �	� � 2 ������ ��� ��� ������� defines a unit quaternion, expressed in terms of an
angle � ��� � and a unit vector � ��� � . The product � ��� � Z � 
 ��� � defines a spatial
rotation of the basis vector Z by angle � ��� � about the axis vector � ����� , while the
factor � M ����� � � imposes a scaling of this rotated vector. Thus, we can interpret
the form (1) as generating a spatial hodograph through a continuous family of
spatial rotations and scalings of the basis vector Z .

An important feature of the form (1) is its structural invariance [11] under
arbitrary spatial rotations of the coordinate system.3 Namely, if the coordinate
system �� � � ��0� �
 � �< � is obtained from � � ��� ��
A��< � by a rotation through
angle � about the unit vector � � � Y Z � � [ \ � � _ ` , the hodograph in the new
coordinate system becomes �� � ��� � � �M ��� � Z �M ��� � , where �M ��� � � � M ����� with� � � 
������� � � � 2 ���� � � � . The components �& , �* , �? , �B of �M can be expressed in
terms of those of M in matrix form as����
 
�& �* �? �B

!#"""
$ �

����
 


������� � ( � Y � 2 �%�� � ( � [ � 2 �%�� � ( � _ � 2 ���� �
� Y � 2 ���� � 
������� � ( � _ � 2 �%�� � � [ � 2 ���� �
� [ � 2 � �� � � _ � 2 � �� � 
���� �� � ( � Y � 2 � �� �
� _ � 2 ���� � ( � [ � 2 �%�� � � Y � 2 �%�� � 
������� �

!#"""
$
����
 
& *? B

!#"""
$ �

Adoption of the quaternion model for spatial PH curves greatly facilitates
the formulation and solution of key problems in their construction and analysis,
and offers new theoretical insights. Compared to the complex–number model
for planar PH curves, however, it requires greater care and attention to detail
in its use, due to the non–commutative nature of the quaternion product.

3This is essential for a characterization of spatial Pythagorean hodographs to be sufficient and necessary,
and distinguishes (1) from an earlier formulation [20], which is sufficient only.



Algorithms for spatial Pythagorean-hodograph curves 5

3. First-order spatial PH quintic Hermite interpolants

A key algorithm [12] in the construction of spatial PH curves is concerned
with the problem of first–order Hermite interpolation — i.e., interpolation of
given end points ��� , � � and derivatives ��� , � � by a spatial PH curve � ��� � for
��� E � ���aI . The lowest–order PH curves capable of solving this problem for
arbitrary spatial data are — as with planar PH curves — quintics. Whereas the
planar PH quintic Hermite interpolation problem yields four distinct solutions
[18], interpolation by the spatial PH quintics incurs a two–parameter family of
solutions [12]. The shape of these interpolants may depend rather sensitively
on these two free parameters, and the question of choosing “optimal” values
for them is still an open problem (one possibility is to impose an additional
constraint, such as a helicity condition [14], on the interpolants).

To construct spatial PH quintic Hermite interpolants, we begin by inserting
a quadratic quaternion polynomial

M ��� � ��M�� �	� ( � � � � M � � �	� ( ��� � � M � � �
into the representation (1). Here the quaternion coefficients M
� � M � � M � are to
be determined by matching the Hermite data ��� , ��� and � � , � � . The conditions
� � ��� � �
��� , � � �	� � ��� � , and � �� � � ��� � � � ��� � ( ��� thus yield [12] the system
of three equations

M�� Z M 
� ����� � M � Z M 
� ��� � � (2)

� ;DM � ��� M � � ;DM � �)Z � ;DM � ��� M � � ;DM � � 
� � � � � � � ( ��� � (���� � ��� � � � �>��� � M�� Z M 
� � M � Z M 
� � (3)

for M�� , M � , M � . This system may be solved by noting that the equation

M Z M 
 ��� (4)

for a given vector �+� � � � ������� ��� � admits a one–parameter family of solutions

M � � � ��� �� �	� � � � � � �"! ( � 2 ��� � 
���� � �UZ����9\ �#��` �J� � 2 � � �$� \ (%��` �� � � &
where � is a free angular variable. The quaternion M serves to scale/rotate the
basis vector Z into the given vector � — the appearance of a free parameter in
the solution reflects the fact that, in � � , there is a continuous family of spatial
rotations that will map one unit vector into another.

Equations (2) can be solved directly for M'� , M � using the known form of the
solution to (4). These quaternions depend on free parameters, � � and � � say.
Substituting them into (2) we may determine ;DM(� �(� M � � ;DM � , and hence M � ,
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using the solution to (4). Again, this incurs a new free parameter — � � , say.
Although the complete solution incurs three indeterminate angular variables� � , � � , � � , close inspection reveals [12] that the Hermite interpolants depend
only upon the differences of these angles. Hence, we may take � � � � without
loss of generality, and the Hermite interpolants to � � , � � and ��� , � � comprise a
two–parameter family. Once M � � M � � M � are known, the Bezier control points
of the interpolant are given by

� � � ��� � �� M�� Z M 
� �� � � � � � �� � � M � Z M 
 � � M � Z M 
� �A�� � � � � � �
; � � M�� Z M 
� ��� M � Z M 
 � � M � Z M 
� �A�� � � � � � �� � � M � Z M 
� � M � Z M 
 � �A���� � � � � �� M � Z M 
� �

with � � being an arbitrary integration constant. Examples of spatial PH quintic
Hermite interpolants, for specific � � , � � values, are shown in Figure 1.

Figure 1. Examples of spatial PH quintics constructed as first–order Hermite interpolants.

A challenging open problem is to generalize the formulation and solution
of the two–point Hermite interpolation to the smooth interpolation of

� � �
points ��� � � � �V� ��� in � � by � � spatial PH quintic splines. In the planar case,
the PH spline problem incurs solution of a “tridiagonal” system of

�
quadratic

equations in
�

complex unknowns. An analogous quaternion system can be
formulated in the spatial case [17]. In attempting to solve it, however, one must
take full account of the non–commutative nature of the quaternion product, and
the residual freedoms associated with each spline segment.
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4. Rotation–minimizing frames on spatial PH curves

An adapted frame along a space curve ����� � is a right–handed system of three
mutually orthogonal unit vectors ���9��� � ��� � � of which � � � ��� � � � � is the tangent
vector, and � � , � � span the normal plane at each point such that � � ��� � � � .
The most familiar example is the Frenet frame ����� �7��W � comprising the tangent,
normal � (pointing to the center of curvature), and binormal W � ��� � . The
variation of the Frenet frame with arc length is described [28] by the equations� ��

�
��� ��� � � ��

�
��� � � � � W�

�
��� � W1� (5)

where the Darboux vector is given in terms of the curvature � and torsion 	 by

� �
� W-� 	 � � (6)

Equations (5) characterize the instantaneous variation of the Frenet frame as a
rotation about the vector � , at a rate given by the “total curvature”� � � ��� �
� � � � 	 � �

However, the Frenet frame is often unsuitable for use as an adapted frame in
applications such as geometric design, computer graphics, animation, motion
planning, and robotics. The vectors ����� �7��W � do not, in general, have a rational
dependence on the curve parameter � , and at inflection points (where � � � )� and W may suffer sudden inversions. Furthermore, the component 	 � of the
instantaneous rotation vector (6) corresponds to an “unnecessary” rotation in
the curve normal plane, that yields undesirable results in computer animation,
swept surface constructions, and motion planning. Among the many adapted
frames [2] on a space curve, Klok [27] suggests the rotation–minimizing frame
(RMF) as the most suitable for such applications. The RMF is defined so as to
“cancel” the 	 � component of the rotation vector by setting� � �� ��� �

� 
���� � � 2 � �( � 2 � � 
���� � �
� �W � �

where the angular function � ��� � is defined4 [22] by

� ��� � � � � (����� 	 � & � � � � � & � � � & � (7)

Because this integral does not admit a closed–form reduction for “ordinary”
polynomial and rational curves, schemes have been proposed to approximate

4An incorrect sign before the integral is given in [22].
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RMFs or to approximate given curves by “simple” segments (e.g., cicular arcs)
with known RMFs [23, 25, 26, 33].

For PH curves, the integrand in (7) is a rational function and thus admits
closed–form integration [9]. A simplification of this integral arises through the
fact that PH curves exhibit the remarkable factorization

� � � � � � � � � � � ��� �
where � �'& �7��*,�7�:?A� � B � , and � is the polynomial defined by

� � � E � & ? � ( & � ? � � � � & B � ( & � B � � � ��* ? � ( * � ? � � � ��*�B � (+* � B � �� � � & * � ( & � *�� � ?aB � (^? � B �9I �
Thus, for a PH curve, we have� �� � � ( E � � ��� � � � � � ��� �9I � � � � � ��� �

� ��� � � ��� �
�

For PH quintics, � � � � � � � � � � � � � is of degree 6, while � and � are both quartic
in � . The latter must be factorized to perform a partial fraction decomposition
of the integrand: this can be accomplished by Ferrari’s method [32]. Complete
details on the closed–form integration of this equation may be found in [9].
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Figure 2. Comparison of Frenet frame (left), Euler–Rodrigues frame (center), and the rational
approximation of rotation–minimizing frame (right) on a spatial PH quintic (for clarity, the
tangent vector is omitted). Note the sudden reversal of the Frenet frame at the inflection point.

Since the integral in (7) involves rational and logarithmic terms, we describe
in [13] an alternative rational approximation scheme, based on the equation� �� � � � & � * ( & * � (^? � B �:?AB �& � ��* � �:? � �LB �
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characterizing the variation of the RMF relative to the Euler–Rodrigues frame
(ERF), defined [3] by� ��� � � M ����� Z M 
 �����M ����� M 
 ����� � � ��� � � M

������\ M 
 ��� �M ��� � M 
 ��� � � � ��� � � M
��� �,` M 
 ��� �M ����� M 
 ����� �

The ERF is a rational adapted frame defined on spatial PH curves. In Figure 2
we compare the Frenet frame, ERF, and rational RMF approximation on an
inflectional PH quintic — the superior behavior of the RMF is clearly apparent.

A natural question is when (or whether) one can have a rational RMF on a
given non–planar polynomial curve. Note that the curve must be a PH curve to
have a rational adapted frame, since only PH curves have rational unit tangents.
A partial answer [3] to this question can be given in terms of the ERF, defined
above — the minimum degree of non–planar PH curves that have rotation–
minimizing ERFs is seven.

5. Tangent indicatrix uniquely determines PH curves

The hodograph � � ����� of a parametric curve can be expressed as the product
of a scalar magnitude and a unit vector

� � ����� � � ����� � �����A�
both dependent on the curve parameter � . As noted above, � ��� � � � � � ����� � is the
parametric speed (the derivative of arc length � with respect to � ). The vector� ����� � � � ��� � � � ����� traces a locus on the unit sphere, the tangent indicatrix of the
curve. Whereas the parametric speed specifies the magnitude of the hodograph
� � ����� at each point, the tangent indicatrix indicates its direction. Integration of
a hodograph yields a unique curve, modulo a translation corresponding to the
integration constant. We will show that, for PH curves, � ��� � plays a somewhat
redundant role in the determination of a curve from its hodograph � � ����� — �������

is uniquely detemined (modulo uniform scaling) by the tangent indicatrix only.
This property distinguishes PH curves from “ordinary” polynomials curves,

for which both the parametric speed and tangent indicatrix influence the shape
of the curve ������� obtained by integration of the hodograph � � ��� � � � ��� � � ��� � .
Two ordinary polynomial curves with the same tangent indicatrix but different
parametric speeds have, in general, quite different shapes. Note also that, for
PH curves, the tangent indicatrix � ��� � � � � ��� � � � ��� � is a rational curve on the
unit sphere, since � ����� is a polynomial (whereas, for an ordinary polynomial
curve, it is the square root of a polynomial, and hence � ����� is not rational).

Proposition 1. Let ������� , �������� be two polynomial PH curves whose hodographs
have relatively prime components. If these curves possess the same tangent
indicatrix, they differ by at most a translation and uniform scaling — i.e.,
� � ����� ��� �� � ��� � for some � �� � .
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Proof. Since � ��� � � ��� �����	��
 �����	��< ������� and �� ��� � � � �� �����	� �
 �����	� �< ��� ��� are both
PH curves, polynomials � ����� and �� ����� exist such that their hodographs

� � ��� � � ��� � ��� �	��
 � ��� �	��< � ��� ��� ��� � �� � ����� � � �� � �����	� �
 � �����	� �< � ��� ���
satisfy

� ��� �����0��
 ��� ��� �J� < ��� ��� � � � � ��� � ��� � �� ��� ��� ��� �
 ��� ������� �< ��� ����� � �� � ��� ���
Furthermore, since � � �����	��
 � �����	��< � ��� � and �� � �����	� �
 � �����	� �< � ��� � are relatively prime,
� ����� and �� ��� � never vanish, and we can assume � ��� ��� � and �� ��� ��� � for
all � . The tangent indicatrices of ����� � and �������� are then � ����� � � � ����� � � ��� � and�� ����� � �� � ��� � � �� ����� , and if they are the same we must have

� � ����� � � ����� �� � ������� �����
� 
 � ����� � � ����� �
 � ������� ��� �

� < � ����� � � ����� �< � ��� ��� ��� �
�

We claim that �� ��� � divides into � ��� � . The Proposition then follows, since we
can swap the roles of � ����� and �� ��� � , and thus � ��� � ��� �� ����� for some � �� � .
Consider the equation � � ����� � � ��� � �� � ��� � � �� ����� . Since � � ��� � is a polynomial,
each non–constant factor of �� ��� � must divide into either � ����� or �� � ��� � , and an
analogous statement holds for 
 � ��� � and < � ��� � . However, if we postulate that a
non–constant factor of �� ��� � divides into �� � ��� � , but not � ��� � , we must conclude
that this factor also divides into �
 � ����� and �< � ����� , which contradicts the fact that��
 � � �� � ��� �	� �
�� ��� �	� �< � ������� � 
�������������� . Hence, we may deduce that � ����� ��� �� ��� �

for some � �� � .
Corollary 1. Given a rational curve � ��� � � �PO ��� �	�XT ��� �	��� ������� � � ��� � on the unit
sphere in � � satisfying ��
 � �PO ��� �	�XT �����	��� ��� ��� ��
����c�������9� , there is — modulo
uniform scaling and translation — a unique polynomial PH curve � ��� � �
��� ��� �	��
 ��� �	��< ��� ��� with ��
 � ��� � ��� �	��
�� ��� �	��< � ������� � 
������������9� that has � ����� as its
tangent indicatrix.

Proof. Since � ��� � lies on the unit sphere, we have O � ��� ��� T � ��� ����� � ��� � � � � ��� � .
Since ��
 � �PO ��� �	�XT �����	��� ��� ��� � 
������������9� , � ��� � is never zero, and thus we may
assume � ��� ��� � for all � . Clearly, for any scalar factor � �� � and integration
constant � � ,

����� � � � � � ����� � ��� �
� � � � �

defines a PH curve, and the uniqueness of ������� , modulo the uniform scaling �
and translation � � , follows from Proposition 1.

Although we have phrased the above results in terms of spatial PH curves,
they obviously also apply to planar PH curves (for which the tangent indicatrix
lies on the unit circle, rather than the unit sphere).
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6. Inversion of spatial Pythagorean hodographs

In [7] we addressed the question of “how many” planar PH curves exist by
showing that, in the plane, the infinite sets of regular PH curves and regular
“ordinary” polynomial curves have the same cardinality — we can establish a
one–to–one correspondence between their members (corresponding curves are
of different degree). This was accomplished by invoking the map ����� � and
its inverse in the complex–variable model for planar PH curves.

In seeking an analogous result for spatial PH curves, we need the ability to
invert the map M ����� � � � ��� � defined by (1) — i.e., given a spatial Pythagorean
hodograph � � ��� � , we wish to identify the pre–image curve(s) M ��� � in quaternion
space that generate it through expression (1). In

�
3 we gave the general solution

to the analogous equation (4) for a fixed vector � . However, this solution is
not appropriate to the problem of inverting (1), since if we replace � by � � �����
it exhibits the factor � � � � ��� � � and we require a polynomial pre–image M ��� � .

Dietz et al. [5] give a constructive proof for the existence of polynomials& ��� � , * ��� � , ? ��� � , B ����� satisfying (1) for a given � � ��� � by invoking the generalized
stereographic projection. Since it is not convenient for actually computing the
pre–image, our goal here is to re–work this proof into a practical algorithm.

Generalized stereographic projection

The notation in [5] differs somewhat from our quaternion model. In [5]
��� � ��� � ��� � ��� � � denote homogeneous coordinates in 3–dimensional projective
real space �

� � , and the hodograph � � ����� � ��� � ��� �	��
 � ��� �	��< � ������� is mapped to its
tangent indicatrix by the correspondence � � � � , � � � � � , � � � 
�� , � � � < � .

The generalized stereographic projection � maps points � ? � �P? � �P? � �P? � � �� � � to points ��� � ��� � ��� � ��� � � on the unit sphere (satisfying �J� � � �a�� � �A�� � �A�� )according to

� � � ? �� �K? � � �:? �� �:? �� �� � �-� ? � ? � ( � ? � ? � �� � �-� ? � ? � � � ? � ? � �� � � ? � � �K? �� (^? �� (^? �� �
This is equivalent to the quaternion formulation if we identify

��� � ��
 � ��< � � � � � ��� � ��� � ��� � ��� � � and � & ��*A�P?0��B � � � ? � �P? � �P? � �P? � ���
Now suppose we are given a Pythagorean hodograph � � ��� � with relatively

prime coordinate components in � E � I . Then the tetrad members � � ��� � ��� � ��� �
are also relatively prime in � E � I . We describe how to compute a pre–image? � �P? � �P? � �P? � under the above quadratic transformation.
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1 Re–write the condition �,� � �L�a�� � �A�� � �A�� as ��� � � 2 � � � ��� � (�2 � � � ���� � � � � � ��� � ( � � � .
2 Compute �1����
 � ��� � ��� � � in � E �/I such that � � �L2 � � ��� � ��1�L2 �� � � and��
 � � �� � � �� � � � � in � E �/I .
3 Factorize � in � E �/I and �� � � 2 �� � in � E � I .
4 Let � be a factor of � in � E �/I . We claim that � divide into either � � ��� �

or � � ( � � , but not both. For, if � divides into both it must be a real
common factor of � � and � � , but � is already a real common factor of � �
and � � , which contradicts the fact that � � , � � , � � , � � are relatively prime
in � E �/I . Hence, we can write � ��� � � � � ��� � � � � � � � such that the ��� ’s are
factors of � � ��� � and the ��� ’s are factors of � � (+� � .

5 Let � � � � � �
	 be a prime factor decomposition of �� � � 2 �� � in �FE � I (note
that some factors may be repeated). Since we have already removed all
the real factors, there is no pair � ���� such that � � � ��
 . Since �FE �/I is a
unique factorization domain, we can uniquely arrange the decomposition
into groups � � � � � ��� and � � � � � ��� such that the first divides into � � � � �
and the second � � (K� � . Note that if ��� divides into � � �C� � , so does � � .

6 From the preceding two steps, we have � � �=� � � � � � � � � ��� �G� � � � � � � ��� � �
and � � (@� � � � � � � � � � � �G� � � � � � � � � � � . Defining �@��� � � � � � � � � � � � � �
and � � � � � � � � � � � � � � ��� , one can verify that ? � ����� � � � , ? � ���� � � � , ? � ����� � � � , ? � ����� � � � constitute a solution (in fact ? � � � �
gives the exact form but we ignored the common constant multiple).

For example, consider the case

� � �"! ($# ����� ; � � � � � � ��� � � �� � � (&% �'# � (%� � � ��� � � � �� � �-� �'# ��� � � � ��� � � �� � �-; ($# ��� � � � � � � �
Then � � and � � are relatively prime in � E � I , and we have

� � � 2 � � � ������� ( � 2 � � � � ( �7�L2 � ���.(C2 �� �	� ( � � ��� � � 2 ��� � � � � �A�
� � � � � � ���0���7� � 2�� ����� � ( � 2 � � � � ( � ��2 � � � � ( �F(C2 ���

Hence, we can set � � � � � � ( � 2 , � � � � � (�� �'2 , � � � � 2 � � � � � � ,
� � � ��( 2 �	�c( � � � � � . Then �@� �,� � � � �]�,� 2 ; �	�c( � � and � �-� � � 2 � �	�,� �]� � ,
giving ? � � � � � , ? � � �	� � ��� � � � � � � � , ? � �-; �	� ( � � � � � , ? � � � � �	� � � � � .
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However, this solution is not unique. In fact � � , � � , � � , � � were initially
constructed using ? �K� �=� �7� � � , ? � � ( �=� � � � � � , ? � ��� ( � � � � ,? � � �=( �)� �G� . The non–uniqueness has also been noted in the quaternion
formulation [11] — if we define���

 
�& ������* ��� �
�? ��� �
�B ��� �

!#""
$ �

���
 

���� � ( � 2 � � � �
� 2 � � 
���� � � �� � 
���� � � 2 � �� � ( � 2 � � 
���� �

!#""
$
���
 
& �����* ��� �? ��� �B ��� �

!#""
$

then
�& ��� � , �* ��� � , �? ��� � , �B ����� and & ��� � , * ��� � , ? ��� � , B���� � define the same PH curve.

This is also apparent from the generalized stereographic projection. The
pre–image ��� � ��� � of any point � � ��� � ��� � ��� � ��� � � on the sphere comprises
the straight line ���8���	� in � � � , where � � ��� � � � ��� � � � � � (F� � � , � �
��� � ��� � � � � � � ��� � � and ����� � � . In fact, one can verify that

� ���
� ���	� � �N� ��� � ��� � � ��� � ��� � � ��� � ��� � ��� � ��� � ���
Now suppose we have a degree– � � curve � ����� � ��� � ��� �	��� � �����	��� � �����	��� � �������

on the unit sphere such that � � ��� �	� � � �V��� � ����� are relatively prime in � E �/I . The
pre–image of this curve under the generalized stereographic projection, i.e.,
the set � �
� � � � ��� ��������� � � ��� , is clearly a ruled surface with base curves
given by � ����� � ��� � ��� �	� � ��� � ��� ���K� � �����	� (F� � ������� and � ����� � ��� � ��� �	��� � ��� ���� � �����	� � ��� � ��� ��� . Note that these two base curves are also of degree � � .

However, a theorem of Dietz et al. [5] states that we can always find another
pair ��� �����	� �� ��� � � of base curves whose degree is just � . If we take � ����� �
� ? � �����	�P? � ��� �	�P? � ��� �	�P? � ��� ��� , we can take �� ��� � � �]()? � ��� �	�P? � ��� �	� ()? � ��� �	�P? � ��� ��� .
For each � , the four points � ����� , � ��� � , � ����� , �� ��� � are collinear.

7. Closure

The quaternion formulation for spatial PH curves, first introduced by Choi
et al. [4], has paved the way for development of basic algorithms concerned
with their construction, analysis, and applications. In this paper, we surveyed
these new developments and identified a number of important open problems.
Compared to planar PH curves, the construction of spatial PH curves typically
incurs free parameters. A deeper theoretical understanding of the role of these
parameters, and their optimal selection, remains to be achieved.
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