Explosive percolation:
What we’ve learned in the past two years

Raissa D’Souza
University of California, Davis
External Professor, Santa Fe Institute
Modeling networks as random graphs

- Configuration models (Bollobás 1980, Molloy and Reed RSA 1995). Enumerating over all networks with specified \(\{p_i\} \).
- Preferential attachment (Barbási-Albert 1999, etc.)
- Growth by copying (Kumar, Raghavan, Rajagopalan, Sivakumar, Tomkins, Upfal FOCS 2000), including duplication/mutation (Vazquez, Flammini, Maritan, Vespignani, ComPlexUs 2003)
- Many more . . .
Building a random instance of a network, $G(N, p)$

- Start with N isolated vertices.
- Consider each possible edge, and add it with probability p.

What does the resulting graph look like?
(Typical member of the ensemble)
\(G(N=300,p) \)

\[p = \frac{1}{400} = 0.0025 \]

\[p = \frac{1}{200} = 0.005 \]
Erdős-Rényi, Emergence of unique “giant component”

- $t < 1$, $C_{\text{max}} \sim O(\ln n)$
- $t = 1$, $C_{\text{max}} = n^{2/3}$
- $t > 1$, $C_{\text{max}} \sim A n$, with $A > 1$

- The critical window

 $$t = 1 + \lambda n^{-1/3} \quad \text{(where } t = 2e/n)$$

- Mean field critical exponents

 $$\chi \sim (t_c - t)^{-\gamma}, \quad \text{with } \gamma = 1.$$

where χ is the expected size of the component to which an arbitrarily chosen vertex belongs.
Connectivity – good or bad?

- Communications, Transportation, Synchronization, ...
 versus

- Spread of human or computer viruses

Percolation, onset of: large scale connectivity, epidemic threshold, global cascades...
Can any limited perturbation change the phase transition?

[Bohman, Frieze, *RSA* 19, 2001]

- Possible to **Enhance** or **Delay** the onset?

- The “**Product Rule**”
 - Choose *two* edges at random each step.
 - Add only the desirable edge and discard the other.

- The Power of Two Choices in randomized algorithms.
 Azar; Broder; Mitzenmacher; Upfal; Karlin;
ProdRule: Explicit example

- Prod $e_1 = (7) \times (2) = 14$
- Prod $e_2 = (4) \times (4) = 16$
- To enhance choose e_2. To delay choose e_1.
Product Rule

- **Enhance** – similar to ER but with earlier onset.
- **Delay** – Extremely abrupt
The scaling window, Δ from $n^{1/2}$ to $0.5n$

- Let e_0 denote the last edge added for which $C_{\text{max}} < n^{1/2}$.
 (Recall ER has $n^{2/3}$ at p_c.)
- Let e_1 denote the first edge added for which $C_{\text{max}} > 0.5n$.
- Let $\Delta = e_1 - e_0$.

PR $\Delta \sim n^{2/3}$

ER (and BF) $\Delta \sim n$.

PR From $n^{1/2}$ to $0.5n$ in number of edges that is sublinear in n.
In terms of edge density or “time”, t_c, where $t = e/n$

(Note, for ER, $t_c = 1/2$)

- For $t < t_c$, $C_{\text{max}} < n^{1/2}$.
- For $t > t_c$, $C_{\text{max}} > 0.5n$.

Jumps “instantaneously” from $C_{\text{max}} = n^{1/2}$ to $0.5n$.
“Explosive Percolation in Random Networks”

From n^γ to greater than $0.6n$ “instantaneously”
(Compelling evidence that the transition is discontinuous)

C_{max} jumps from sublinear n^γ

to $\geq 0.5n$ in n^β edges, with $\beta, \gamma < 1$.

Nontrivial Scaling behaviors

$\gamma + 1.2\beta = 1.3$ for $A \in [0.1, 0.6]$

Achlioptas, D’Souza, Spencer, *Science*, **323** (5920), 2009
Similar “Explosive percolation” ...

 “Explosive Growth in Biased Dynamic Percolation on 2-D Regular Lattice Networks”

 “Percolation Transitions in Scale-Free Networks under the Achlioptas Process”
 (Chung-Lu weighted node power law growth model)
 \(p_c > 0 \) for \(\gamma > 2.3 \) or \(2.4 \) and discontinuous.

 “Explosive percolation in scale-free networks”
 (Configuration model power law)
 \(p_c > 0 \) for \(\gamma > 2.2 \), discontinuous for \(\gamma > 3 \).

 “Construction and Analysis of Random Networks with Explosive Percolation”

 “Cluster aggregation model for discontinuous percolation transition”

 “Explosive Percolation in the Human Protein Homology Network”

 “Explosive percolation via control of the largest cluster”
More “Explosive percolation” ...

- Cho, Khang “Explosive percolation transitions in diffusion-limited cluster aggregation model”

- Bastas, Kosmidis, Argyrakis “Explosive site percolation and finite size hysteresis” (*Percolations talk session)

- . . .
Beyond “Product Rule”: Models with fixed choice

- Nothing special about two edges; need a fixed number greater than one. (An “Achlioptas process”: examine fixed number of edges, add the one that optimizes a pre-set criteria.)
- “Sum rule”, Adjacent edge, Triangle rule, k-clique rule, etc., all also work.
- These rules keep largest components similar in size in subcritical regime:
 - “Powder Keg” of Friedman and Landsberg *PRL* (2009).
 - Starting ER from proper initial state; Cho, Khang, Kim *PRE* (2010).
Puzzle 1: Hybrid Transitions!
(Discontinuous change, but scaling behavior)

- Component density $n_i \sim i^{-\tau}$
- “Susceptibility”, $W \sim |t - t_c|^{-\alpha}$
- Second largest, $C_2 \sim |t - t_c|^{-\mu}$

<table>
<thead>
<tr>
<th></th>
<th>PR</th>
<th>AE</th>
<th>TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_c</td>
<td>0.888</td>
<td>0.796</td>
<td>0.848</td>
</tr>
<tr>
<td>τ</td>
<td>2.1*</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>α</td>
<td>1.17</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td>μ</td>
<td>1.17</td>
<td>1.13</td>
<td>1.13</td>
</tr>
</tbody>
</table>

Puzzle 2: “Weakly” discontinuous

Rather than Δ (the number of edges in the scaling window), measure: the maximum impact from adding \textit{one single edge}.

- $C_1 :=$ the fraction of nodes in the largest component.
- $\Delta C_1 :=$ largest change in C_1 due to addition of a single edge.

(From Manna, Chatterjee)

\[\Delta C_1 \sim n^{-0.065} \]

The truth: In limit \(n \to \infty \), the Product Rule is continuous!

 Assume component density scales at critical point, \(n_i \sim i^{-\delta} \), and then can show ultimately continuous but with extremely slow decay.
 For \(n = 10^{18} \) still see \(\Delta C_1 = 0.1 \) from a single edge (10% of system size!). (PR at \(t_c \), \(\Delta C = 0.1 \) for \(10^9 \), 0.07 for \(10^{11} \).)

- Riordan, Warnke, arXiv:1102.5306:
 Rigorous proof: Any fixed choice process ultimately continuous!
 \(\Delta \) will ultimately crossover to linear in \(n \), but no estimate of crossover.

- Grassberger, Christensen, Bizhani, Son, Paczuski, arXiv:1103.3728*
 Unusual finite size behavior

- Lee, Kim, Park, arXiv:1103.4439
 Finite size scaling data collapse.
 (*See Percolations talks*)

- Are any real social or technological networks of size \(n \sim 10^{18} \)?
 (100 billion = \(10^{11} \))
The search for a truly discontinuous percolation transition

A deterministic model

- (a) Phase $k = 2$, merge all isolated nodes into pairs.
- (b) Phase $k = 4$, merge pairs into size 4 components.
- (c) Phase $k = 8$, merge pairs of 4’s into 8’s.
- etc.
- At edge $e = n$ (time $t = 1$) one giant of size n emerges

(Giant emerges when only one component remains)
Re-visiting the Bohman Frieze Wormald model (BFW)

- A **stochastic model**, which exams a **single-edge at a time**.
 (Not a model with choice or edge competition).
- Like deterministic, start with n isolated vertices, and stage $k = 2$.
- Sample edges uniformly at random from the complete graph on n nodes.
- Can simply **reject** edges but in phase k
 must accept at least
 $g(k) = \frac{1}{2} + \left(2k\right)^{-1/2}$
 fraction of sampled edges.

 \[g(k) \to \frac{1}{2} \]

- **Rigorous proof**: (bounded-size differential eqns)
 - No component of size greater than 200 when $e = 0.96689n$ edges added.
 - Giant component must exist once $e = cn$ edges, with $c \in [0.9792, 0.9793]$.
 - $(t_c < 1$: an infinite number of components exist at transition.\)
The BFW model in words

- Start with n isolated vertices, and cap on maximum component set to $k = 2$.
- Sample an edge uniformly at random from the complete graph on n nodes, and examine the result of adding the edge:

 1. If the resulting component size $\leq k$, accept the edge.

 2. Otherwise reject that edge if possible (meaning the fraction of accepted edges remains $\geq g(k)$).

 3. Else augment $k \to k + 1$, and repeat steps (1) and (2), with (3) if necessary. (Recall augmenting k decreases $g(k)$).
The BFW model stated formally

- Initially \(n \) isolated nodes with cap on maximum size set to \(k = 2 \).
- Let \(u \) denote the total number of edges sampled
- \(A \) the set of accepted edges (initially \(A = \emptyset \))
- \(t = |A| \) the number of accepted edges.

At each step \(u \), select edge \(e_u \) uniformly at random from complete graph, and apply the following loop:

Set \(l = \) maximum size component in \(A \cup \{e_u\} \)

\[
\text{if } (l \leq k) \{
 A \leftarrow A \cup \{e_u\}
 u \leftarrow u + 1
\}\]

\[
\text{else if } (t/u < g(k)) \{
 k \leftarrow k + 1
\}\]

\[
\text{else } \{
 u \leftarrow u + 1
\}\]

- If the edge \(e_u \) is troubling and \(t/u < g(k) \), augment \(k \) repeatedly until either:

 (i) \(k \) increases sufficiently that \(e_u \) is accepted or

 (ii) \(g(k) \) decreases sufficiently that \(e_u \) is rejected.
Simultaneous emergence of multiple stable giants in a strongly discontinuous transition
(Wei Chen and R.D. Phys. Rev. Lett. 83 (2011).)

- Two stable giants!
 \(C_1 = 0.570, C_2 = 0.405. \)
 - Fraction of internal cluster edges > 1/2.
 - (If restrict to sampling only edges that span clusters, only one giant ultimately.)

“Strongly” discontinuous (gap independent of \(n \))
\[\Delta C_{\text{max}} \approx 0.165 \]
• Now let \(g(k) = \alpha + (2k)^{-1/2} \). Smaller \(\alpha \) more edges can be rejected. \(\alpha \) determines number of stable giants!

• Multiple stable giants, not anticipated. ("uniqueness of the giant component" / gravitational coalescence)

• Applications for multiple giants? (Communications, epidemiology, building blocks for modular networks, polymerization (Krapivsky, Ben-Naim)...)
More generally, **Discrete jump:**

multiple giants coexist in critical window

- Note, like Nagler, Manna, da Costa, etc, we define as the critical point t_c, the single edge who’s addition causes the biggest change, ΔC_{max}.

 (Recall C_1 is the *fraction* of nodes in the largest component.)

- If $\Delta C_1 > 0$ (i.e. if we see a discrete jump) then there necessarily existed another macroscopic component. e.g. If $\Delta C_{\text{max}} = 0.1$ (as in da Costa model with $n = 10^{18}$), that means C_1 merged with a component of size $|C_j| = 0.1n$.

- So, t_c is just beyond the “post-critical” regime for Erdős-Rényi.
Deriving the underlying mechanism:
Slow decay of $g(k)$ leads to growth by overtaking
(Wei Chen and R.D, arxiv Fri/Mon, http://mae.ucdavis.edu/dsouza/Pubs/bfw.pdf)

- Instead of $g(k) = 1/2 + (2k)^{-1/2}$ now let $g(k) = 1/2 + (2k)^{-\beta}$

- Procedure: analyze by how much k must grow before $g(k)$ would decrease sufficiently to reject troubling edge.
• For $\beta \in (0.5, 1]$, an increase in $k \sim n^{\beta}$ is always sufficient to reject a troubling edge. Slow increase in k means:
 – Growth by overtaking*: two smaller components merge becoming new C_1.
 – Multiple components of size $O(n)$ before the largest jump.

• For $\beta > 1$, once stage $k = \frac{n^{1/\beta}}{C_1}$, an increase in $k = C_1$ would be needed, allowing C_1 to even double (the max increase possible). Thus once $k = \frac{n^{1/\beta}}{C_1}$ troubling edges **must** be accepted at times, leading to large direct growth of C_1, and a weakly discontinuous transition.

For $\beta > 1$, once $k = n^{1/\beta}$ direct growth merging with size $O(n)$.
For $\beta = 0.5$ no scaling. Separates into components of size $O(n)$ and $< \log(n)$.

For $\beta = 0.5$ and $\beta = 2.0$ no finite size effects in the location of the “hump” (inset), unlike for PR where location depends on n. (c.f. Lee, Kim, Park: data collapse)

No scaling, no “early warning signs” (Scheffer, et. al. *Nature* (2009)).
A rigorous proof of a discontinuous transition for a variant on Erdős-Rényi

Panagiotou, Spöhel, Steger, Thomas, arxiv:1104.1309

- An Erdős-Rényi-like evolution, but at every step connect two vertices, one chosen randomly from all vertices, and one chosen randomly from a restricted set of vertices.
Does EP apply to any real physical process or provide useful applications?

- Growth of wikipedia in 5 different languages: disconnected topical clusters merging together over a few days. (G. Bounova)

- Applications to network discovery (with Z. Toroczkai)

- Multiple giants...
From multiple giants to interacting networks

Networks:

- Transportation Networks/Power grid (distribution/collection networks)
- Biological networks - protein interaction - genetic regulation - drug design
- Computer networks
- Social networks - Immunology - Information - Commerce
Sandpile cascades on interacting networks
C. Brummitt, R. D’Souza, E. A. Leicht (arxiv on Friday)

Balancing the benefits and detriments of interconnectivity.
Explosive percolation in random graphs – Conclusions

• Models with fixed choice are “weakly” discontinuous (gap decays *slowly* with system size)... Is there a better name?

• In the true $n \to \infty$ limit, they are in fact *continuous*, but the crossover may be greater than 10^{18}. In what regime do real-world networks exist?

• Truly discontinuous percolation transitions do exist (BFW, restricted Erdős-Rényi).

• **Multiple giant components** necessarily exist before the discrete jump (and, c.f. BFW, can co-exist in supercritical region).
Thanks to

- Collaborators: D. Achlioptas, J. Spencer, M. Mitzenmacher, W. Chen

- Funding Agencies:
 - Army Research Laboratory under Cooperative Agreement Number W911NF-09-2-0053.
 - Defense Threat Reduction Agency, Basic Research Award No. HDTRA1-10-1-0088.
 - National Academies Keck Futures Initiative.

- To you for your attention.

Potential postdoctoral opportunities: raissa@cse.ucdavis.edu