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Abstract

Hierarchy of social organization is a ubiquitous property of animal and human groups, linked

to resource allocation, collective decisions, individual health, and even to social instability. Experi-

mental evidence shows that both intrinsic abilities of individuals and social reinforcement processes

impact the structure of hierarchy. We develop a rigorous model that incorporates both features and

explore their synergistic effect on stability and the role of talent. For pairwise interactions, we show

there is a trade-off between relationship stability and having the high ranks occupied by talented

individuals. Extending this to open societies, where individuals may enter or leave the population,

we show their are important societal effects that are a product of the interaction between talent

and social processes, that cannot be observed if either effect dominates: (i) despite positive global

correlation between talent and rank, paradoxically, local correlation is negative, and (ii) the removal

of an individual can induce a series of rank reversals that can not be seen in traditional models

that incorporate only social reinforcement. We show that the mechanism underlying the latter is

the removal of an older individual of limited talent, who nonetheless was able to supress the rise of

younger more talented individuals.
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Introduction. Hierarchy is a central organizing principle of complex systems, manifest-

ing itself in various forms in biological, social, and technological systems [1]. Therefore to

understand complex systems, it is crucial to develop quantitative methods that describe

hierarchies [2–5] and to identify their origins and benefits [6, 7]. Among the various forms

of hierarchy, here we are concerned with social hierarchies emerging through competition.

Such hierarchy represents a ranking of individuals based on social consensus: a high ranking

individual is expected to win a conflict against a low ranking one. This type of organiza-

tion is present in societies ranging from insects to primates and humans [3, 8–10], and has

been linked to resource allocation, individual health, collective decisions, and social stabil-

ity [7, 11–13].

The prevalence of social hierarchies motivated a long history of theoretical research in

statistical physics and mathematical biology [6, 14–17]. The unifying theme in explaining

the emergence of hierarchies is positive reinforcement of differences known as the winner (or

looser) effect: initially equally ranked individuals repeatedly participate in pairwise compe-

titions, and after an individual wins (or looses), the probability of him winning (or loosing)

later competitions increases. The conditions for hierarchies to emerge and their structure

was thoroughly investigated [9, 16–18].

A number of experimental studies investigated the role of intrinsic attributes and social

reinforcement in hierarchy formation. These experiments focused on small groups of animals,

and found that reinforcement and intrinsic differences affect hierarchy to varying extent

depending on the context [18–20]. However, a general picture emerges: both abilities and

experience contribute simultaneously to the rank of individuals. This observation seems to

hold for species with relatively simple social interactions, such as cichlid fish [21], to species

that form highly complex societies, such as primates [11, 22].

Despite the clear indication of experiments that both talent and reinforcement matter, we

are lacking general theoretical understanding of their synergistic impact [23]. In this Letter,

we develop a rigorous model incorporating both talent and social reinforcement and show

that this captures a much richer landscape. For pairwise interactions, we show a trade-off

between societal stability and having more talented individuals as the high-ranked leaders.

We then extend the model to open populations, where individuals enter and leave the group,
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and we characterize both the global and the local structure of the hierarchies. Another

pressing issue is to understand the hierarchy’s response to perturbation, e.g., the effect of

removing an individual. In particular, animal behavior experts must often make strategic

decisions to remove individuals from captive societies due to health issues or in attempt to

promote social stability, which sometimes lead to unanticipated large instabilities [12, 24].

We show that traditional models predict smooth response and no rearrangement; if, however,

both talent and social reinforcement are equally important, removal of an individual can lead

to a non-trivial series of rank reversals.

Model. Our starting point is a variant of the classic Bonabeau model [6]. It describes a

social group with N members, where the rank of each member is determined by its ability

to defeat others in pairwise competitions. This time-dependent ability is quantified by a

score xi(t), where the subscript indexes the individuals. The scores are initially identical

(xi(t = 0) ≡ 0) and they change through two discrete-time processes. First, through positive

feedback of differences: In each time step, participants are randomly paired to compete

with each other, and the winner increases its score by δ. Individual i wins against j with

probability

Qij(t) =
1

1 + exp[−β(xi(t)− xj(t))]
, (1)

where β is an inverse temperature-like parameter, for large β the outcome of the fight is

deterministic, for β = 0 both parties have equal chance to win irrespective of their score.

The second process is forgetting: The effect of a fight wears off exponentially, i.e., xi(t) is

reduced by µxi(t) (0 ≤ µ ≤ 1) in each time step. Approximating the process with the

deterministic equation

xi(t+ 1) = (1− µ)xi(t) +
1

N
δ
∑
j 6=i

Qij(t), (2)

it was shown that depending on the relative strength of reinforcement and decay the model

supports either egalitarian (xi ≡ 0) or hierarchical (xi 6≡ 0) steady state solutions [6, 25].

To include intrinsic attributes or talents, we offset the score of each participant in Eq. (1)

by base intrinsic abilities bi and bj:

Qij(t) =
1

1 + exp[−β(xi(t) + bi − xj(t)− bj)]
. (3)
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FIG. 1. Fairness and stability (N = 2). (a) Score difference in function of ε, without (black)

and with intrinsic difference (red). If ∆b 6= 0, for large ε only one hierarchical solution exists

corresponding to the fair ranking, i.e., rank is determined by talent; and through a discontinuous

transition a new solution emerges corresponding to the opposite, unfair ordering. (b) We quantify

the stability of the dominant-subordinate relationship with Qavg, strong reinforcement leads to

stability. (c) Critical point in function of ∆̄b.

The parameters bi and bj quantify attributes that are independent of social processes on

the timescale of hierarchy formation, yet are relevant to conflict outcomes. Examples may

include strength, intelligence, or other talents.

Two individuals. To understand the consequences of intrinsic differences, it is insightful

to first investigate a population of N = 2 individuals. The deterministic equation describing

the steady state is provided by

0 = −µ∆x+ δ

(
2

1 + exp [−β(∆x+ ∆b)]
− 1

)
, (4)

where ∆x = x1 − x2 and ∆b = b1 − b2. Introducing y = β∆x, ∆̄b = β∆b and ε = µ/(δβ)

leads to

0 = −εy +
2

1 + exp
[
−y − ∆̄b

] − 1, (5)

meaning that the steady state is determined by the talent difference and a single parameter

ε measuring the relative strength of decay to social reinforcement [26].
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Systematically changing ε, we observe a transition at εc separating regimes with one

and two stable solutions, the nature of the transition depends on the presence of intrinsic

differences. If ∆̄b = 0 (Fig. 1a black line), we recover the original model: For ε > ε
(0)
c we have

one solution, representing the egalitarian state y = 0, and at εc two symmetric hierarchical

solutions (y1 = −y2 6= 0) emerge through a pitchfork bifurcation. If ∆̄b 6= 0 (Fig. 1a red line):

For ε > εc we again find just one solution; this solution, however, is not egalitarian (y > 0),

the more talented outranks the less talented. At εc a new stable solution appears through

a discontinuous transition supporting the opposite order, the less talented outranking the

more talented. In other words, social reinforcement can outpace intrinsic differences. We call

the y > 0 solution fair and the y < 0 one unfair, since the more talented as higher ranked has

better access to resources, potentially improve collective decisions, and has higher chance to

foster offspring.

Figure 1c shows εc dependent on ∆̄b. In general, no closed-form solution is available;

limiting cases, however, can be worked out: for small differences we find (εc − 1/2) ∼ ∆̄b
2/3

and for large differences εc = ∆̄b
−1

. The latter indicates that increasing talent difference or

decreasing reinforcement push the system to a regime where only the fair solution exists. This

prompts the question: what does the system benefit from the social reinforcement process?

To answer this question, we quantify the stability of a dominant-subordinate relationship

with Qavg, the probability that the dominant wins a conflict averaged over the stable steady

state solutions, Qavg ≈ 1/2 indicating an unstable, Qavg ≈ 1 a well-defined relationship.

Figure 1b shows that increasing the weight of social reinforcement increases Qavg, revealing

a fundamental trade-off between stability and fairness: stable relationships require strong

social reinforcement; however, strong reinforcement allows for unfair hierarchical states. This

provides rationale for why hierarchies would be influenced equally by both intrinsic talent

and social processes.

Open populations. So far we focused on the relationship of two individuals, now we turn

our attention to larger, changing populations. We study groups of N individuals where the

talent of each individual is drawn randomly from a distribution p(b). We initially allow the

population to reach a stable ranking. Then in each step t, we remove a random individual

and add a new member i to the bottom of the society, i.e., xi(t) = 0, and again allow
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the population to reach a stable ranking. For simplicity we restrict our investigation to the

β →∞ limit, in which case Qij becomes a step function: i always wins if i outranks j. This

allows us to explicitly formulate the condition for two consecutively ranked individuals to

reverse ranks as

b(k + 1)− b(k) > ∆x ≡ δ

µ(N − 1)
, (6)

where b(k) is the talent of the individual ranked kth (k = 1 is the top and k = N is the

bottom rank) and ∆x = x(k)−x(k+1) doesn’t depend on k. Therefore, instead of simulating

dynamics of Eq. (2), we check each consecutive pair and if Eq. (6) is satisfied, we reverse

their order. We repeat this until no more change is found.

The talent b of an individual represents an intrinsic ability or a combination of abilities

that influence the outcome of a fight. Here we investigate the case where p(b) is Gaussian.

Indeed, body size, intelligence, and other relevant abilities are often normally distributed.

Equation (6) only depends on the difference of abilities, allowing us to shift the mean of p(b)

arbitrarily; furthermore, we can set its variance by rescaling ∆x. Therefore, without further

loss of generality, we restrict our investigation to the standard normal distribution.

We now systematically investigate the structure of the emergent hierarchy in function

of ∆x through simulations and analytical calculations (details in the Supplementary In-

formation). We measure correlation between rank and talent (τtal) and between rank and

experience (τexp) using Kendall’s tau coefficient, where experience is the amount of time

an individual spent in the population. For example, τtal = 1 indicates talent completely

determines rank and τtal = 0 indicates no correlation. Figure 2a shows that for large ∆x

rank is dominated by experience, meaning that the only way to advance in hierarchy is if a

higher ranking individual is removed; and for small ∆x rank is dominated by talent. These

two limiting cases are separated by a regime where both talent and experience matter, the

crossover point where τtal = τexp = 1/2 is ∆x∗ ≈ 0.36.

Many experiments showed partial correlation between rank and certain individual at-

tributes [9]; this, however, can be explained by incorrect identification of the relevant abili-

ties. Some experiments were designed to explicitly demonstrate that both abilities and social

history matter by showing that hierarchies are only partially re-established after separating
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FIG. 2. Talent-rank correlation. (a) Kendall’s tau in function of ∆x. Global talent-rank (red)

and experience-rank (green) correlation shows a crossover between talent and experience dominated

limiting cases. Counter-intuitively, we find that locally talent and rank are anti-correlated (blues).

(b) Local rank-talent anti-correlation. In the crossover regime, the expected talent increases with

rank (red), yet the probability that an individual’s immediate superior is less talented is greater

than 1/2 (green). Results are shown for populations of N = 100, continuous lines are analytical

solutions [RRR,SI]. Data points are an average of 10,000 independent samples and error bars

represent the 95% CI.

then re-joining animal groups [21]; yet, without knowledge of relevant attributes the value

of talent-rank correlation remains unknown. In the Supplemetary Information, we show that
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τtal+τexp = 1 if talent and introduction time are independent. And while relevant abilities are

challenging to identify, τexp is straight forward to measure. Indeed, Tung et al. created groups

of rhesus macaques by introducing animals one-by-one into an eclosure and found that the

Spearman’s correlation between rank and experience is ρexp = 0.61, providing evidence that

some real systems are in the cross-over regime [11].

In addition to global correlations, we also measure local orderedness by calculating τtal(w),

the talent-rank correlation averaged over a sliding window of length w. Counter-intuitively,

Fig. 2a shows that in the crossover regime τtal(w) is negative, meaning that locally rank and

talent are anti-correlated. Figure 2b provides an additional aspect of this paradox situation:

The expected talent 〈b(k)〉 of an individual ranked kth at a random time step monotonically

increases with rank; yet the probability that the (k − 1)th individual, the one immediately

outranking the kth, is less talented than the kth is greater than 1/2.

To understand the mechanism producing the local anti-correlation, first consider two

consecutive individuals forming an ordered pair with respect to talent, i.e., b(k) < b(k−1). If

a new individual arrives with talent b such that b(k)+∆x < b and b(k−1) < b < b(k−1)+∆x,

it can pass the kth individual, but cannot pass the (k− 1)th, lodging itself between the two

and creating an unordered pair. If, however, the pair is unordered, i.e., b(k) > b(k − 1),

any individual passing the kth individual will necessarily pass (k − 1)th too. Therefore an

unordered pair will remain unordered until one of the pair is removed. This asymmetry in

creating ordered and unordered pairs is responsible for the local anti-correlation.

Finally, we also investigate the effect of removing an individual. We find that in the talent

or experience dominated limiting cases the system’s response is trivial and no re-organization

happens. However, Figure 3 shows that the probability that removal induces rank reversals

prr is non-zero in the intermediate regime. And both prr and the average number of these

rank reversals Ndiff peak near, but not exactly at, the crossover point ∆x∗. For induced rank

reversals to happen, three consecutively ranked individuals are needed in opposite order with

respect to talent, i.e. b(k+ 1) > b(k) > b(k− 1). If the condition b(k+ 1)− b(k− 1) > ∆x is

satisfied, the removal of the kth individual allows the (k+1)th to pass the (k−1)th. In other

words, the kth individual is not talented enough to further advance in society, but is capable

of holding back a more talented contender. Understanding the response of hierarchies to
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FIG. 3. Removal of a group member. In the limiting talent and age dominated cases removal

has trivial effect, while in the crossover regime the removal of an individual causes rank reversals

with finite probability (red). The average number of rank reversals peaks near ∆x∗ (green). Results

are shown for populations of N = 100, continuous lines are analytical solutions [RRR,SI]. Data

points are an average of 50,000 time steps and error bars represent the 95% CI.

external perturbation is an important issue. Particularly, removal of animals from primate

groups can sometimes lead to unanticipated large instabilities [12, 24]. Here we demonstrated

that traditional models of hierarchy formation only considering either intrinsic differences

or social feedback cannot explain such rank events, and that both effects have to be present

simultaneously.

Discussion. In this Letter, we studied the synergistic effect of intrinsic differences and

social reinforcement on the structure of competitive social hierarchies, and we identified

behaviors that cannot be observed if either effect dominates. We derived our model assuming

random pairwise conflicts and a winner effect, we believe that the results can be interpreted

more generally: (i) The mechanism behind local talent-rank anti-correlation and removal

induced rank reversals is that to pass someone in rank it is not enough to be more talented,

but the talent difference has to be sufficient to compensate for the advantage of being higher

ranked – a process that we believe is relevant to a wide range of other rankings, examples

might include bibliometric rankings of scientists, best seller lists, or sports rankings. (ii) We
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introduced parameter b to capture individual abilities such as body weight or strength;

however, it can be though of as a proxy for support of kin or as a simplified model of

reputation received in exchange for non-adversarial social interactions.

Finally, our results prompt many open research questions, both experimental and theo-

retical. Local anti-correlation and removal induced rank reversals are predictions that are

testable through experiments or observational data. We are also obliged to acknowledge that

the model does not capture the full complexity of real systems, for example, future work

may investigate the role of ageing, e.g., slow deterioration of talent; non-normal distribu-

tion of talent; or non-linear hierarchies, where a social tier might be occupied by multiple

individuals.
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