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Outliers involving mechanisms absent in smaller events, known as Dragon Kings, are seen in many
complex systems. An open problem, however, is whether models can self-organize to states that
create Dragon Kings, or whether they only exist for certain externally fine-tuned parameter choices.
In this Letter, we develop two related models where nodes in a network self-organize to be either
“weak” or “strong” to failure when neighboring nodes fail. In one model, strong nodes are assumed
to never fail, and the model displays self-organized criticality. However, in the other model, nodes
are resistant, but not impervious, to the failure of multiple neighbors, and the model self-organizes
to a state with Dragon Kings, which are highly sensitive to initial failures: a failure in a small portion
of the network lead to global failures. We call this Dragon King mechanism a “runaway failure”,
in which the failure of subsystems piggyback off the failure of previous systems until almost all
nodes fail. This model is in contrast with previous models where Dragon Kings occur in a subspace
of parameters. We then demonstrate a simple control strategy that can decrease the frequency
of Dragon Kings by orders of magnitude, which has been difficult to achieve for high-dimensional
complex systems. Our models may give insight into self-organizing mechanisms underlying large-
scale failures in natural and engineered systems.

PACS numbers: 89.75.Da 02.30.Yy 05.65.+b

Natural and engineered systems that usually behave in
a manageable manner may nonetheless be prone to rare,
catastrophic events [1–11]. Two categories have been pro-
posed for these events: Black Swans, which are tail events
in a power-law distribution, and Dragon Kings (DKs),
which are outliers involving mechanisms absent in smaller
events, and occur far more frequently than the power-law
of a Black Swan would predict [1, 2]. The heavy-tailed
distribution necessary for Black Swans to exist is often
explained by self-organized criticality (SOC): a tug-of-
war that poises the system close to a critical point with-
out any need for external interventions [5–8]. Although
prediction of Black Swans can sometimes beat random
chance [12], the task appears to be inherently difficult
[13]. Despite this drawback, there are simple methods to
push SOC systems away from criticality, thus reducing
the size of Black Swans [8, 14, 15].

It has been argued that DKs occur in complex systems
that have low heterogeneity and strong coupling (as de-
fined in [16]) and that, in contrast, Black Swans occur
in systems with weaker coupling and higher heterogene-
ity. Whereas Black Swans have no associated length- and
time-scales, DK events do: there are typical places and
times when DKs will and will not occur. This has been
successfully applied to, for example, prediction of mate-
rial failure and crashes of stock markets [1], and has been
seen in engineered systems, such as error cascades in a
collection of robots [17]. Unlike Black Swans, however, it

has been an open problem to control DKs in many situ-
ations and to elucidate the mechanisms underlying these
self-amplifying cascades [2]. Recent advances to control
DKs have been based on low-dimensional models, such
as coupled oscillators [18], but control of DKs in models
of high-dimensional complex systems has been lacking.

In this Letter, we strive to capture the essence of Black
Swan and DK formation on complex systems through
two related self-organizing network models. Both consist
of nodes that are either “weak” or “strong” in the face
of neighboring failures. These models are identical in
most aspects: a weak node fails as soon as one of its
neighbors fails, a failed weak node has small probability,
ε, to be reinforced and upgraded to a strong node, and
strong nodes independently degrade (i.e., become weak)
at a slow rate. The two models differ, however, in the
strong-node failure-spreading mechanisms: either strong
nodes cannot fail, which we call inoculation (IN) [19],
or they fail as soon as two of their neighbors fail, which
we call complex contagion failure (CC) [20]. The former
model is alike to site percolation, and is the null model
we compare the CC model to.

We are interested in the long-term behavior: each cas-
cade causes small changes in the number of weak and
strong nodes, which induces the slow self-organization
of the network. As the reinforcement probability, ε, ap-
proaches zero, both models self-organize to specific (but
distinct) states. While the IN model is similar in spirit
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to some previous self-organized critical models of engi-
neered systems [7, 8], the CC model spontaneously gen-
erates DKs (failures of nearly the entire system) over all
values of ε < 1, a prediction that we have confirmed for ε
over several orders of magnitude. These DKs are funda-
mentally different than previous models of self-organized
systems, where the models were externally tuned to cre-
ate DKs [1], and those DKs did not affect the entire sys-
tem. The main reason for this significant difference is
that DK failures in the CC model tend to occur when
the first cluster of weak nodes to fail is sufficiently larger
than a certain value. This is related to the probabil-
ity that a strong node that bridges weak-node clusters
will have two neighbors in the initial failing cluster, a
generalization of the birthday problem [21]. Once this
probability is significant, then failures are likely to spread
from the first weak-node cluster to subsequent weak-node
clusters. More strong nodes are then likely to fail by pig-
gybacking off of the previous failures. We can make an
qualitative analogy to the gas-water phase transition in
condensed matter, where water droplets (the failure size)
have a surface tension (analogous to the strong nodes)
which makes larger droplets energetically dis-favorable,
while the inside of the water droplet (analogous to the
the cluster of failed nodes) makes larger droplets (larger
failures) energetically favorable. In both our model and
in droplet nucleation, there is a critical size, above which
the droplet or failed cluster grows almost without bound
[22].

We take advantage of this finding to predict whether a
small initial failure will cascade into a DK event. More-
over, a simple targeted-reinforcement control strategy, in
which we turn a few fairly well-chosen weak-nodes into
strong nodes, can decrease the likelihood of DKs and
other large failures by orders of magnitude.

Self-organizing models. The dynamics of our models
depend on two competing mechanisms: degradation and
reinforcement. Degradation, which represents the aging
of infrastructure or an increase of load placed on them,
is modeled by slowly converting strong nodes into weak
ones. Conversely, reinforcement converts weak nodes
that fail during a cascading event into strong nodes at
rate ε, representing the hardening of nodes in an attempt
to prevent future failures. This is a reasonable assump-
tion mimicking modern-day power grid guidelines [23],
where resources are allocated to places were failures hap-
pen more often. The trade-off between degradation and
reinforcement drives the system to an SOC state.

For simplicity, we consider dynamics on a 3-regular
random networks with N nodes, where N is an even pos-
itive integer. Repeated edges and self-loops are allowed,
but are rare when N is large. The system size and the
probability ε are the model’s only parameters. We are
particularly interested in large N and small ε, but due
to motivation from real-world systems, we are also inter-
ested in finite-size effects as well as the consequences of
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FIG. 1. (Color online) Self-organizing behavior and failure
size. Top row: Fraction of weak nodes p(t) vs. t for the (a)
IN and (b) CC models over individual network realizations
for N = 106. Larger values of ε cause slower relaxation. Bot-
tom row: Failure size distribution for the (c) IN and (d) CC
models, with the DK outliers labeled. Symbols denote results
of simulations on random 3-regular graphs averaged over ten
network realizations and 15×N time steps.

a non-zero ε.
Both the CC and IN models follow the same general

algorithm. At time t = 0, we initialize all N nodes as
weak. Weak nodes fail if at least one of their neighbors
fail which can cause subsequent failures. The distinc-
tion is that under the CC model, strong nodes fail if at
least two of their neighbors fail, whereas in the IN model,
strong nodes cannot fail. In detail, each discrete time
step 0 ≤ t ≤ tstop proceeds according to the following
algorithm.

Degradation: Select a node uniformly at random. If
that node is strong, make it weak and proceed to
the beginning of the Degradation step with t ←
t+ 1. If the selected node is already weak, then it
fails, and continue with the remaining three steps.

Cascade: Apply the IN or CC failure-spreading mech-
anism until no more failures occur. Failed nodes
remain failed for the duration of the cascade.

Repair: All failed nodes are un-failed (strong failed
nodes become strong un-failed nodes, and weak
failed nodes become weak un-failed nodes).

Reinforcement: Each weak node that failed at this
time step has probability ε to become strong. Pro-
ceed back to the Degradation step with t← t+ 1.

Many other choices for initial conditions are possible,
but our investigations show that the steady state behav-
ior is independent of these choices (see SI). Because we
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currently initialize all nodes as weak, the sizes of the first
few cascades are on the order of the system size, and nu-
merous node upgrades take place before the system equi-
librates. An important indicator that we have reached
the relaxation time is the proportion of nodes that are
weak at time t, p(t), which is shown in the top row of
Fig. 1. We wait until well after p(t) stabilizes (5 × N
timesteps) and then calculate failure sizes for a subse-
quent 15N timesteps. Although we cannot prove that
the model has reached equilibrium, waiting longer, and
varying the initial conditions (see SI) produces quantita-
tively similar results. For the IN model, we find that p(t)
is almost independent of ε as ε approaches zero, but in
the CC model, the steady-state value of p(t) depends on
ε.

Failure size distribution. The results for the failure
size distribution, P (s), are illustrated in the bottom row
of Fig. 1, which demonstrates each model’s propensity
to create large failure events. The probability of large
failures generally increases with decreasing ε for both the
IN and CC models because, if less nodes are reinforced,
cascades can more easily spread and affect larger portions
of a network. For small enough ε, we find that the cascade
size distributions for the IN and CC models exhibit a
power-law with exponential decay, however the CC model
also has a DK tail, where over 99.9% of nodes fail in each
DK event (cf. Fig. 1(d)). Furthermore, they appear to
have two different power-law exponents: α = −1.11 for
the IN model and α = −1.24 for the CC model when
ε = 3.2 × 10−4 and N = 106 (in comparison, traditional
SOC models yield α = −1.5 [24, 25]).

Dragon King Mechanism. Why do DKs occur in the
CC model? To establish a theoretical understanding of
DKs, we first note that a failure in any part of a weak-
node cluster makes the entire cluster fail. A necessary,
but not sufficient, condition for a DK to occur is that
strong nodes bridging the first failed weak-node cluster
must also fail (cf. Fig. 2(a)), which we call it a one-step
failure cascade. In the simplest case, only one strong
node bridges two weak-node clusters. We first analyze
the probability that the failure of a weak-node cluster,
with size Cw,1, will lead to the failure of at least one
bridging strong node, denoted by S1, and find that S1

nodes can accurately model the probability of multiple
weak-node clusters failing (see SI).

The one-step failure cascade is, however, a poor ap-
proximation of a DK event (cf. Fig. 2(b)), where cas-
cades leads to yet more cascades (i.e., failed weak-node
clusters lead to subsequent cluster failures until almost all
nodes fail). To better understand DKs, we need to know
whether the first failed weak-node clusters will lead to
further failures, e.g., a two-step cascade, as seen in S2

in Fig. 2(a). To obtain this probability, we first prove
that the number of weak-node clusters that fail just after
the first weak-node cluster fails is Poisson distributed.
Furthermore, if we assume that the clusters are indepen-
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FIG. 2. (Color online) DKs form by cascading failures of
weak-node clusters. (a) Weak-node clusters (circled) are sur-
rounded by strong nodes. If one such strong node (S1) has
two links connecting to the same weak-node cluster, the fail-
ure of this cluster (with size Cw,1) will make the strong node
fail, and the cascade may spread to other weak-node clusters
(e.g., one of size Cw,2), and thus other strong nodes (e.g., S2),
eventually creating a DK event. (b) A heat map of the prob-
ability a DK occurs in the CC model conditioned on Cw,1,
the size of the weak-node cluster that first fails, versus N and
Cw,1 for ε = 10−3. Black dashed line is the simulation result
for Ccrit,DK, while solid lines denote our analytic calculations
of two-step failure cascades Ccrit,2 (green line) and one-step
failure cascades Ccrit,1 (white line).

dent and identically distributed random variables from a
scale-free distribution, then we can find the distribution
of failed weak nodes after the first step of a cascade,
which we use to calculate the probability of two-step
failure cascades (a necessary condition for DKs), given
the initial cluster size Cw,1. We numerically find that
P (two-step cascade|Cw,1) = 1/2 when

Ccrit,2 ∼ N0.55±0.01. (1)

Although a necessary condition, a two-step failure
cascade does not always create a DK, therefore
P (two-step cascade|Cw,1) > P (DK|Cw,1), which implies
that Ccrit,2 < Ccrit,DK, where Ccrit,DK is the critical
size of Cw,1 such that P (DK|Cw,1) = 1/2. We find
that these bounds agree with what we see numerically
(cf. Fig. 2(b)), and Ccrit,2 is in much closer agreement
than Ccrit,1 is to Ccrit,DK. We next consider how these
critical values scale with system size. Equation (1) im-
plies that O(N0.55) ≤ Ccrit,DK ≤ N . These bounds
are in agreement with the numerical scaling, in which
Ccrit,DK ∼ Nγ , where γ = 0.59 ± 0.03 (see SI). Impor-
tantly, Ccrit,DK scales sub-linearly, therefore only a small
proportion of the network needs to initially fail before a
DK is likely to occur.

Finally, we can discuss how P (DK) varies with N
and ε. First, we make simplifying assumptions that any
Cw,1 > Ccrit,DK creates a DK, and approximate P (Cw,1)
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FIG. 3. (Color online) Predicting DKs. The area under the
receiver operating characteristic (AUC) for logistic models of
P (DK|p) (closed symbols and solid lines) and P (DK|Cw,1)
(open symbols and dashed lines) for varying N [26].

as a power-law with an exponential cut-off, λ, that is
proportional to ε (see SI). We find that increasing ε by a
small amount creates an unexpectedly large percentage
reduction of P (DK) as well as large percentage reduction
in failures that are not DKs (cf. Fig. 1). Surprisingly,
DKs exist for any value of ε. If ε is proportional to the
cost of upgrades, then our results suggest that upgrading
failed components in a system slightly more frequently
can dramatically reduce the probability of serious fail-
ures. When ε → 0 and N is large, the theory suggests
that P (DK) ∼ N−0.15±0.02 (see SI), therefore DKs slowly
disappear in the thermodynamic limit, but the scaling ex-
ponent is so small, that DK events are visible for almost
any value of N and ε.

Predicting Dragon Kings. DKs are, in contrast to
Black Swans [12, 13], fairly predictable [1], although it
may not be obvious what independent variables best indi-
cate these events. For example, we find little correlation
in the time between DKs (the autocorrelation is < 0.01
for N = 106, see SI), therefore, knowing the time-series
of DKs will not tell is when another will necessarily oc-
cur. To answer this question, we analyze two different
predictors. The first predictor is the fraction of weak
nodes present in the network. The rational is that more
weak nodes create larger initial failures, and therefore
create more DKs. The second predictor is the size of the
first weak-node cluster, Cw,1. We earlier established that
the probability of DKs correlates with Cw,1, although we
have yet to see whether this is adequate for predicting
DKs. Both of these predictors are complimentary, be-
cause the former would tell us when a DK might occur,
while the latter would tell us where a DK might origi-
nate, i.e., whether a cascade in progress will lead to a
DK.

We model P (DK|p) versus p, and P (DK|Cw,1) versus
Cw,1, respectively, using logistic regression. Unless ε is

relatively large, p is a poor predictor as based on the
area under the receiver operating characteristic (AUC,
cf. Fig. 3) [26]. Thus, predicting when a DK would oc-
cur is inherently challenging. In contrast, by knowing
Cw,1 alone, we can predict DKs with astounding accu-
racy, almost independent of N and ε. The high accuracy
is due to the characteristic size of the initial failure that
triggers a DK, Ccrit,DK (see SI for figure). This is reminis-
cent of previous results on controlling DKs in a system of
oscillators where a trajectory straying past a particular
threshold is very likely to create a DK [18, 27]. For each
node, finding Cw,1 requires searching locally in the net-
work until we find neighboring strong nodes, and because
Cw,1 � N , the effort this would require is small, there-
fore, given an initial failure, we can accurately predict
whether a DK would occur with relatively little effort.
Similarly, to “tame” DKs, we can use a simple control
mechanism that requires knowing the size of just a few
weak-node clusters, as seen in the next section.

Controlling Dragon Kings. Because large weak-node
cluster failures precede DKs, we can reasonably ask
whether breaking up these clusters before they fail can
reduce the prevalence of DKs. Assuming that the rate of
node upgrades is proportional to the amount of “money”
or effort allocated for repairing nodes, we create con-
trol strategies where this rate is kept the same on av-
erage as the non-controlled case, meaning p(t) remains
approximately constant. Instead of randomly reinforcing
failed weak nodes, we upgrade weak nodes in large clus-
ters by picking r weak nodes and finding the size of the
weak-node clusters to which they belong. The largest of
these weak-node clusters is selected and with probability
1− p(t), a random node in that cluster is reinforced. We
find that, when r = 1, more DKs occur than without con-
trol therefore some attempts to reduce the size of failures
could actually could make the failures worse. However,
larger r represents a better sampling of the cluster sizes,
and a greater chance for large clusters to be broken apart,
which reduces the probability of DKs by orders of magni-
tude (cf. Fig. 4(a)), as well as large failures that are not
DKs (cf. Fig. 4(b)). Furthermore, the number of nodes
we have to search through is only r×〈Cw,1〉 � N on av-
erage, which makes this technique applicable in systems
where global knowledge of the network is lacking.

Discussion. We have shown that DKs can self-
organize in the CC model via runaway failure cascades.
Moreover, this mechanism allows for DKs to be easily
predicted and controlled. We believe that this model can
describe a number of mechanisms, discussed below.

The CC model allows for individuals with simple con-
tagion dynamics (weak nodes) [28], and complex conta-
gion dynamics (strong nodes) [29], to co-exist on a net-
work and assumes that agents become “complex” at a
rate ε after they have adopted an idea (failed), which can
be interpreted as agents exhibiting greater stubbornness
to new ideas. The CC model suggests that agents can
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FIG. 4. (Color online) Controlling DKs. (a) The probability
a DK occurs over time versus ε in both the non-controlled
scenario (NC, pentagons), and in the controlled scenario with
r weak-nodes chosen: r = 1 (circles), r = 3 (diamonds),
r = 5 (squares) and r = 7 (triangles). Simulations are realized
for N = 106, and standard errors are smaller than marker
sizes. See main text for details of the control method. (b)
Failure size distributions for different control strategies and
non-controlled with ε = 3.2× 10−4.

self-organize to a state in which global adoption (DKs)
occurs surprisingly often. This could explain, for exam-
ple, the mechanism of large financial drawdowns in stock
markets, which are found to be DKs [1], where social
interactions, seen in stock market participation [30] and
foreign exchange trading [31], can convince brokers to
buy or sell as a group. Some brokers will buy (sell) stock
when any neighbor does, while other agents buy (sell)
stock only after multiple neighbors do. Our model may
also represent mechanisms for cascading failures seen, for
example, in electrical power grids [32, 33], where rein-
forcement of failed units (represented as nodes in our
model) is a common practice [23]. Nodes, representing a
part of a complex system, can degrade and be reinforced
at slow rates to represent upgrade costs that are high and
often limited to the point of making the system barely
stable [7, 8]. Surprisingly, however, we find that reinforc-
ing a system slightly more often, or selectively reinforcing
nodes (the control strategy with r > 3), creates a signif-
icant percentage drop in the frequency of DKs. In con-
trast, naively reinforcing nodes at random (the control
strategy with r = 1) dramatically increase the frequency
of DKs.

The IN and CC models provide novel mechanisms for
cascading failures. The IN model can help explain why
a failure size distribution in a complex system follows a
power-law, which is seen, for example, in electrical black-
outs [7, 34], while the CC model can help explain why
DKs exist in the failure size distribution of real systems.
Although a fundamental assumption of the IN model is
that strong nodes never fail, it is reasonable to expect
that reinforced nodes in real systems can fail, therefore
the CC model may describe the mechanism behind many
cascading failures.

Future work is necessary to verify that certain real sys-
tems have analogous failure mechanisms, and to better
understand the mechanism of DKs. The research pre-

sented here, however, provides a concrete methodology
to begin studying how DKs are driven by the interplay
of heterogeneity (for example proportion of strong nodes)
and coupling (e.g., node degree) in a principled manner,
which is still in its infancy [1]. We have also not ex-
plored the effect that the mean degree, the degree dis-
tribution, or the failure threshold has on CC dynamics.
Generalizing the CC model to these networks also creates
additional degrees of freedom, for example the failure dy-
namics could depend on the minimum number of neigh-
boring agents [20], or minimum fraction of neighboring
agents [35], that need to fail for the failure to spread to
a strong node. This distinction becomes important for
heavy-tailed degree distributions.
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