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This special issue of the Proceedings of the IEEE focuses on how

digital technology is changing the structure and dynamics of social

networks and the tools we have for studying and designing them.

As a testament to the importance of this topic consider that as of
2014, 72% of Internet users in the

United States and 64% of users world-

wide use social media [1], [2]. Face-

book alone has 1.15 billion users, up

from 1 million in 2004, just ten years

ago [2]. In the United States, the

average user spends more than one

fourth of every online hour on social
media, and almost 50% of Americans

say that Facebook is their #1 influen-

cer of purchases [2]. Google+ has

been around for only three years and

already there are 1 billion Google+

enabled accounts [2].

This rapid growth in connectivity

stands in stark contrast to the vast
majority of human history in which social networks were small and geograph-

ically localized, institutions changed slowly, and power and influence were

concentrated in a small subset of the population [3]. The rise of the world wide

webVand particularly the invention of powerful search technologies, social

media platforms, and novel file sharing technologiesVhas led to an explosive

growth in social network size and connectivity as well as the development of

new kinds of reputation-based barter systems (e.g., reviewed in [4] and [5]) and

underground economies (e.g., [6]). Standard geographic definitions of popula-
tion compete for causal relevance with definitions that group people together

based on behavioral criteria, including hyperlinking on the web [7]. It is now

possible to track events as they unfold

in real time, to coordinate relatively

rapidly over long space scales (for a

potential example, see [8]), and to
access semiglobal and global informa-

tion to make decisions. This means

that individuals and subgroups with-

out much power in the traditional

sense potentially can serve as instru-

ments of large-scale social change.

The growth of social networks on di-

gital media also means it is possible to
collect big, reliable data sets on human

behavior and associated events such as

earthquakes [9], as human behavior

on digital media leaves a relatively

easily harvestable data trail [10].

These technological changes, the

new social structures they seem to be

producing, and the data being gener-
ated permit reconstructing the behav-

ior of individuals from their digital

footprints (e.g., [11]; see also the pa-

per by Coviello et al. of this special

issue [12]). This will enable empirical

study of how different kinds of social

structures arise from interactions

among individuals at the microscopic
level and what the implications are of

alternative social structures for social

stability and contagion processes. As

progress is made on this front,

large-scale intervention into human

This special issue focuses
on how digital technology
is changing the structure
and dynamics of social
networks and the tools we
have for studying and
designing them.
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behavior and demographics will no
longer be restricted to coarse man-

ipulation of environmental variables

or interventions based on qualitative

understanding of how social systems

work (as an example, consider the so-

called causal loop diagram produced

to describe the counter insurgency

dynamics in Afghanistan [13]).
Precision, quantitatively justified

interventions into behavioral dynam-

ics will become increasingly feasible.

Already such interventions are being

employed; the Facebook ‘‘61-million-

person experiment’’ in which users’

affective states were manipulated [14]

serves as one example. These inter-
ventions will allow the interveners to

influence individual decision-making

and permit modulation and possibly

control of macroscopic properties of

social systems; currently, for example,

large, digital data sets on online social

behavior are being harvested to inform

the design of social media platforms
(e.g., [15]). Although these large-scale

experiments on human behavior will

initially occur in the digital world,

they will eventually inform the mech-

anism design of real-world infrastruc-

ture to optimize communication and

better meet basic human needs such as

access to food, sanitation, healthcare,
and schooling (e.g., [16]).

Hence social media, search, and

data extraction technologies are not

only changing the structure and dyna-

mics of social networks but are also

potentially changing how controllable
these systems are. The purpose of this

special issue is to review what is cur-
rently known about how these tech-

nologies are changing social networks

and what the consequences will be for

human social dynamics. Understand-

ing the impact of changing technology

on social networks is relevant to the

readers of the Proceedings of the

IEEE for several reasons. One reason
is that it is engineers, mathema-

ticians, and computer scientists who

are largely responsible for developing

the social media technology, file shar-

ing protocols, and pattern extraction

algorithms that are producing changes

to social networks. An understanding

of cognitive principles and behavioral
interaction rules underlying social

network formation can facilitate the

development of social media applica-

tions that individuals are more likely

to use.

A second reason is that an under-

standing of cognitive and behavioral

constraints could improve the perfor-
mance of machine learning and other

pattern detection and data extraction

algorithms by providing principled

means to restrict the search space.

Finally, with the rise of online

social networks information becomes

a concept as central as energy to

informing design of infrastructure.
Societies are composed of multiple,

overlapping social networks. This is

true for networks developing in ‘‘real’’

space as well as on digital media. The

local connections of a node in these

multiple, overlapping social networks

can be thought of as that node’s social

niche [17], with the edges in each of
the networks representing different

kinds of relationships, for example,

friends, co-workers, mentors, and stu-

dents. Whereas the ecological niche

[18] (the term ‘‘niche construction’’

was invented in ecology; see [19]) is

composed of resource vectors (avail-

ability of wood for building dams, prey
items, and so on), an individual’s social

niche is composed of its vector of be-

havioral relationships in the set of

overlapping social networks in which it

participates [17]. These behavioral

relationships provide critical informa-

tion that facilitates resource extraction,

and the construction of these networks
by users can be thought of as a form of

social niche construction [17], [20].

To the extent this conceptuali-

zation is correct, social networksV
perhaps more than other types of

networksVare about the flow of in-

formation. This means that higher

order features of network structure
(that is, minimally, connections be-

yond a node’s direct connections) may

be of critical impotence to under-

standing the functional consequences

of a given network for its nodes, both

individually and collectively. This ob-

servation is increasingly valid as social

networks move online and become
further divorced from direct resource

extraction. In addition, issues of so-

ciotechnical congruenceVthe match

or mismatch between social networks

and the technological networks they

build and rely uponVhave implica-

tions for information flow that need to

be considered when assessing how in-
formation impacts function and ener-

gy extraction (e.g., [21]). As Weaver

and Shannon [22] noted more than

60 years ago, although we have a good

theory of information defined as un-

certainty, we have no theory relating

information to function. The migra-

tion of social interactions into the di-
gital domain means that the absence

of semantic and functional theories of

information is no longer a curious

omission but a central challenge for

theory and analysis.

In the first paper, Bettencourt

suggests that a property of social, in-

formational networks is superlinear
scaling, which translates into increas-

ing returns to scale. Bettencourt pro-

poses that network dynamics in these

kinds of complex social systems need

to be understood in relation to evo-

lutionary learning and inference

principles. He develops a conceptual

framework to explain the transition
from relatively static, homogenous,

in format ion-poor networks to

information-rich, diverse, and highly

interconnected ones using current

understanding of social scaling in ur-

ban environments to develop his argu-

ment, and then extending it to the

digital social domain using the Inter-
net and Wikipedia as case studies.

Networks typically have organiza-

tion at multiple levels of scale, from

correlations between individual nodes

to larger scale modular structures and

groupings into communities of nodes

with similar characteristics. Under-

standing how to reliably detect these
structures remains a central activity in

the study of networks, especially as

the goal is to connect structural fea-

tures with the function of a network.

This task is increasingly challenging

as we comprehend the extent to

which multiple communities can
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overlap in nontrivial ways. In the
second paper, Yang and Leskovec

tackle this issue by considering each

community as a ‘‘tile’’ which can

overlap extensively with other tiles.

Their methodology decomposes the

network into a combination of over-

lapping, nonoverlapping, and hierar-

chically organized communities. In
contrast to previous work, they show

that nodes residing in the overlap

between communities are more

densely connected than those in

nonoverlapping regions. Moreover,

they show that overlap between

multiple communities identifies

dense network cores, revealing the
coreYperiphery structure in networks

and thus offering a method to unify

the study of network modularity and

coreYperiphery structure.

Singh et al. point out, in the third

paper, that the line between real or

physical social networks and those on

digital media is not as strict as many
assume. The authors observe that

fine-grained behavioral data on indi-

viduals collected from online sources

and smartphones are now being

merged to give an increasingly com-

prehensive picture of an individual’s

location, social ties, actions, and con-

text in both settings. These merged
data can be used to influence the ac-

tions and beliefs of individuals in both

settings, largely because smartphones

function as a bridge between worlds.

This bridge allows individuals to

behave simultaneously in both the

digital and physical domains, create-

ing real-time couplings between their
social behavior in both worlds.

The question of how coupling oc-

curs between social behavior in the

online and physical worlds can be re-

framed as a question of synchrony and

contagion: How does behavior spread

over social networks through conta-

gion and other mechanisms and when
do contagion dynamics lead to corre-

lation in social preferences and deci-

sion making and even behavioral

synchrony? The large quantity of

quantitative data on behavior and

contagion available from social media

sites means that this question can be

addressed at a variety of scales, and it
means that, in principle, the causal

mechanisms and factors that influ-

ence spread and synchrony can be

identified.

There are two broad classes of ap-

proaches that can be used to quantify

causal relationships. One is experi-

mental intervention. This can include
perturbing the social media platform

itself (e.g., how individuals are al-

lowed to make posts, how long those

posts can be, etc.), perturbing the so-

cial media environment (e.g., chang-

ing the aesthetics of the site, site

branding, types of advertising to

which users are exposed, etc.), and
injecting information or behavior into

the system (e.g., creating users and

posts), and tracking its effects using

time-series analysis.

The second approach for quantify-

ing casual relationships is observa-

tional with statistical ‘‘interventions’’

(e.g., Pearl’s ‘‘do’’ operator [23]). Al-
though it is relatively easy to perform

large-scale experiments using social

media data, there are, as the Facebook

controversy discussed above illus-

trates, many ethical issues that need

to be carefully considered before pro-

ceeding. Developing methods for per-

forming ‘‘statistical’’ interventions on
observational data is consequently of

utmost importance. The fourth paper

by Coviello et al. develops a method

for quantifying influence of users on

one another. The method combines

geographic aggregation and instru-

mental variables regression to mea-

sure the effect of an exogenous
variable on an individual’s expression

and the influence of this change on

the expression of others to whom that

individual is socially connected. The

authors demonstrate the power of the

approach in the context of emotional

contagion of semantic expression but

also show that the approach is quite
general and can be applied to many

kinds of data collected from a variety

of social networking platforms.

These ideas are reviewed in a

broader, technical context by Holme,

in the fifth paper. Holme highlights

that the data available from social

media sites and online social networks
typically have time stamps. These

time stamps allow analysis of how
the timescales on which contacts and

interactions occur can influence con-

tagion dynamics and network con-

struction. Holme reviews methods

for analyzing temporal networks. He

addresses challenges in representing
temporal interactions in networks

and in the construction of appropri-

ate null models of temporally evolv-

ing network structure. He also

discusses principled means for sim-

plifying temporal networks to make

them amenable to rigorous analysis.

As discussed above, a growing
proportion of human activity is leav-

ing behind digital footprints. In the

sixth paper, Lamboitte and Kosinski

show how pervasive details left in

these footprints can be used to infer

an individual’s personality, where

personality refers to the major psy-

chological framework identifying in-
dividual differences among people in

behavior patterns, cognition, and

emotion. In addition to reviewing the

factors of personality, they review a

range of recent works focused on

predicting personality from digital

traces. They conclude with discussion

of the increasingly important implica-
tions for privacy, security, and data

ownership as well as future directions

for research.

In the final paper, Walker and

Muchnik delve into how our tradi-

tional methods of experimental

design, which divide subjects into

control and treatment groups, need
to be radically redesigned for our di-

gital world. Traditional methods ne-

glect the natural connections that

exist between individuals, and, more

so, that the impact of treatment can

propagate through such connections.

In analogy to big data, they survey the

burgeoning movement of big experi-
ments (such as the 61-million-person

experiment on Facebook [14]). They

discuss the broad range of aspects

that need to be considered for

appropriate design of network-

randomized trials, including the ex-

perimental setting, the process under
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study, and the impact of connectivity.
Equally important is their discussion

on emerging methods to draw statis-

tically meaningful conclusions from

such experiments as well as develop-

ing novel treatment schemes that

leverage connections in social net-

works. They repeatedly highlight the

important and subtle distinctions be-
tween offline and online experimental

settings.

In conclusion, this is an exciting

moment in human history as the di-

gital world and the physical world

become increasingly intertwined in a

seamless manner. We offer three

take-home messages.
• Social media, search, and data

extraction technologies are

not only changing the struc-

ture and dynamics of social

networks, but are also chang-
ing how controllable these

systems are.

• Precision, quantitatively jus-

tif ied interventions into

behavioral dynamics are in-

creasingly feasible within the

digital domain, permitting

large-scale experiments on
human behavior and social

systems. This is useful and

presents challenges.

• We understand the rela-

tionship between energy and

informationVhow bits get

converted to wattsVfor elec-

trical circuits, but not for
social networks. In biology,

computational social science,

and the science of social engi-

neering, the development of a

functional theory of informa-
tion is a central theoretical

challenge that needs to be ad-

dressed if these disciplines are

to have strong foundations. h
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INV ITED
P A P E R

Impact of Changing Technology
on the Evolution of Complex
Informational Networks
This paper proposes a general framework to understand the fundamental advantages

of connectivity in complex informational networks.

By Luı́s M. A. Bettencourt

ABSTRACT |We live in an era of increasing connectivity in human

societies and in technology. These structural changes in the ways

we interact with each other and with increasingly ubiquitous

computational and communication devices have been formalized

in research across several disciplines through the dynamics of

complex informational networks. Complex networks are (math-

ematical) graphs, connecting nodes (people, computers) via

edges (relationships, wires). While much progress in methods

for network analysis has been achieved, the fundamental princi-

ples that drive network growth in human societies and in world-

wide computer networks remain rather obscure. Mechanistic

models for the origin of certain structural graph elements have

now become common, but the formal connection between large

empirical studies of network evolution and fundamental concepts

of information, learning, and social theory remains only latent. To

address these issues, I argue here that themost interesting aspect

of the dynamics of informational networks in complex systems is

that they are the physical manifestations of processes of evolu-

tion, inference, and learning, from natural ecosystems, to cities

and to online environments. I formalize the general problem of

learning and computation in network environments in terms of

average structural network changes and propose a conceptual

framework to explain the transition from initially static, undiffer-

entiated, and information-poor environments to dynamical,

richly diverse, and interconnected systems. I illustrate these

ideas empirically by providing examples from cities, and from

global computer networks and webs of documents. I finish with

an overview of expected changes to urban form and function and

to computational hardware under likely technological scenarios.

KEYWORDS | Collaborative work; communication networks;

complex networks; distributed computing; intelligent systems;

learning systems; urban areas; Wikipedia; World Wide Web

(WWW)

I . INTRODUCTION

We live at a time of increasing connectivity. This is true of

many of our most important technologies as well as of
human societies themselves [1]. The rise of telecommuni-

cations and of globally networked information technolo-

gies, such as the World Wide Web (WWW), is clearly

changing human societies in many ways, from our ability to

create and store information and run civic institutions [2],

[3] to scientific research [4], and from technological

innovation [5] to human development [6], [7]. Not only are

people and human organizations increasingly connected
worldwide but also so are devices and engineering systems,

through developments in information and communication

technologies (ICTs), such as the Internet of Things [8].

Why do these trends toward greater global connectivity

seem so irresistible? Why now? To attempt to answer these

questions, I propose that we must build a general frame-

work to understand the fundamental advantages of con-

nectivity in complex informational networks, as well as
their associated costs. Through the analysis of these

tradeoffs and their change over time we will gain new

perspectives from which we can take a new unified look at

the history of many technologiesVfrom cities, to trans-

portation and telecommunicationsVand assess the future

Manuscript received May 10, 2014; revised October 15, 2014; accepted October 27,

2014. Date of current version November 18, 2014. This work was supported in part by

the Bill and Melinda Gates Foundation under Grant OPP1076282; the MacArthur

Foundation under Grant 13-105749-000-USP; the James S. McDonnell Foundation

under Grant 220020195; the John Templeton Foundation under Grant 15705;

the Army Research Office Minerva program under Grant W911NF1210097;

and by a gift from Jeannie and Michael L. Klein.

The author is with Santa Fe Institute, Santa Fe, NM 87505 USA (e-mail:

bettencourt@santafe.edu).

Digital Object Identifier: 10.1109/JPROC.2014.2367132

0018-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1878 Proceedings of the IEEE | Vol. 102, No. 12, December 2014



of a more connected global human society and its rela-
tionships to Earth’s other complex adaptive systems [9].

The ideas developed below are about informational

networks, which are a subset of what we now refer to as

complex networks [10]. Informational networks are made

of nodes that are capable of changing their internal states

in ways that can expand their information content. This

happens in tandem with changes of connectivity as deter-

mined by their relative benefits and costs. For example,
people can acquire new knowledge and expertise and ex-

change it through an expanded set of socioeconomic rela-

tions with others. In this sense, I will not have much to say

about complex networks such as power grids, metabolic

graphs, or transportation networks, which do not share

these properties. Examples of informational networks may

include human socioeconomic systems at different scales,

networks of evolving documents, as well as, possibly,
ecological networks and neuronal networks capable of

learning (natural and artificial), though the latter will not

be discussed here.

Because they deal with learning, informational net-

works pose a set of difficult problems, tied to the dynamics

of innovation and productivity in distributed systems. How

then may we start to understand these systems in general

but simple ways? I propose here that the place to start is
the realization that general computation and network

connectivity are useful, because information, its discovery,

and aggregation are necessary conditions for development

in human societies [6], [7], [11] and for learning processes

more generally. This point is not new: It is the basis for our

best current ideas about economic growth [12] and human

development, as well as, in different forms, about natural

and technological ‘‘evolution’’ [5], [13], [14].
The interplay between the structure of various complex

networks and their embedded information runs in both

directions. While technological change that enables larger

and more connected individuals provides the conditions

for differentiation and learning [15]–[17], it is also true

that the acquisition and management of information will

remain limited when not embedded in dynamical network

structures [18].
Specifically, the creation and management of informa-

tion typically requires greater human social connectivity

through the specialization and interdependence of knowl-

edge in individuals and organizations [19]. These processes

of individual and social change are much older than

technological progress in modern computing. Although

some precedents existed in simple human societies [20],

they became manifest in earnest with the advent of the
first urban civilizations [21]. With the industrial revolution

and the development of new transportation and commu-

nication technologies, these processes gained new speed

and scope, culminating with the worldwide information

revolution currently under way [1], [22]. Thus, it is

important to understand the basic conditions necessary for

networks of intelligent nodes (such as people) to acquire

information in open-ended ways, and the nature of
situations when such dynamics may stall. Providing a

simple (mean-field) framework to understand these

dynamical changes is the main objective of this paper.

II . INFORMATIONAL BASIS FOR
INCREASING CONNECTIVITY

Unlike what happens in simple physical systems where
interactions between a system’s elements constrain its

overall structure [23], increases in connectivity in informa-

tional networks can, in some specific circumstances, lead

to greater individual freedom. This statement may appear

paradoxical and requires further explanation. In this

section, I formalize these ideas and show when a dynamics

of diversification and learning in networks can develop and

how it benefits from technological change.
Before I introduce a more formal description, I would

like to tap on some of our common intuition for this fami-

liar but perhaps unexpected phenomenon. Many human

social environments encourage, and indeed require, that

individuals pursue different interests and vocations [24]–

[26]. In modern human societies, these processes are partly

formalized in educational and professional organizations.

In this sense, individuals are encouraged to learn and create
new information and new expertise and should expect to be

rewarded for such efforts. Much of the modern explosion in

technology, science, and the arts depends on the properties

of these environments [24]–[26] as does entrepreneurship

and human development [6], [7]. Urban [21], [24]–[26]

and online environments [27] are general examples of

networks where such dynamics of personal expression,

learning, and sharing are not only possible on vast scales,
but are, in fact, in some sense necessary.

Thus, the type of freedom that networked systems open

up is intimately tied to their ability to allow individuals and

groups to acquire new information, new roles, and new

relationships in fluid ways. In other words, this freedom

resides in the various forms of knowledge and relation-

ships that nodes can create, and not so much on the

reduction of the number of such interactions [26], [28].
Crucially, this increase in diversity and (implicitly) in

individual learning and social expression in networked

systems has important material consequences to human

societies as it typically leads to greater (economic) produc-

tivity as a function of the size of the system, a concept

know in economics as increasing returns to scale [29].

Below I discuss in more detail how this can happen as the

result of network effects and, in fact, how these effects not
only follow, but are necessary, to support a process of

increasing connectivity and learning as part of a dynamical

virtuous cycle of development. Important examples of

these effects are that the economies of bigger cities tend to

be larger on a per capita basis [30]–[32] than those of

smaller places. Similarly, online systems such as the WWW

or Wikipedia become more productive per capita (in ways
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that I will specify in Sections III-B and III-C) as a growing
function of their size.

The essential property for this type of individual differ-

entiation to occur is that nodes can increase their infor-

mation through learning. Note that this is a necessary but

not sufficient condition, as I demonstrate below. This is a

natural property of human social networks, but it is

currently only incipient in many technological networks,

where learning at the node level (webpage, article, com-
puter program) still requires human intervention [33].

The rest of this section is dedicated to formalizing

these ideas in general terms, first by grounding the bene-

fits of connectivity in foundational concepts from econo-

mics and social sciences, then by discussing the origin and

costs of connectivity and finally by bringing it all together

in a general quantitative framework for open-ended net-

work dynamics.

A. General Advantages of Connectivity in
Informational Networks

Evidence for the advantages of connectivity in infor-

mational networks is everywhere, from global trade to

living in cities and from the achievements of science to the

many uses of the WWW. But it has not always been like

this and for a good reason: as I show below, connectivity is
very costly and requires system scale and density to pay off.

Here, I start from the very beginning by revisiting the basic

concepts by which large-scale social connectivity in human

societies has been justified and understood. In this way, I

attempt to create a picture of how connectivity gradually

develops in networks of certain types and how it can be-

come more and more pervasive, under certain conditions

that rely on technological change.
The general advantages of connectivity in networked

informational systems are perhaps best introduced through

the foundational concept of economics [34] and sociology

[35], [36]: The division and coordination of labor. In the

book that created modern economics, Adam Smith dedi-

cated the three opening chapters of the Wealth of Nations
[34] to the spectacular increases in productivity achieved

by the division of labor. Smith illustrated this point
through the increases in productivity of workers at a pin

factory: By specializing in different small tasks and coordi-

nating their labor as a whole to produce the final product,

Smith estimated that each worker was able to produce

about 480 pins/day, while a person working alone may

master just a few. Thus, we obtain an increase in average

labor productivity of about 100.

What are the basic ingredients of this spectacular gain in
labor productivity? Adam Smith originally identified three

types of effect, each of which remains important in modern

complex networks though they may not be sufficient.

First, he considered the effect of learning to perform a

task better, that is, the process of acquiring knowledge and

expertise through accumulated experience [37]. This sort of

effect has since been extensively studied in manufacturing

at the organizational level and in cognitive science, at the
individual level [38], [39]. A second source of productivity

gains arises from the time savings resulting from avoiding

switching between tasks. Finally, a third source of gains

relies on the possibility that a task that has been rendered

sufficiently simple through the successive division of labor

can be made automatic, and, in that sense, be performed by

a machine, thus saving human labor. Many technologies

started this way, by the observation from a specialized
worker of a solution that can save his/her labor and time.

These different sources of productivity gains are very

general and clearly transcend the context of economic

production in manufacturing. Thus, we should not think of

the process of the division of labor, in terms of vertical

integration of minutely specialized jobs in manufacturing

firms (though it is that as well) but rather of the distribution

of tasks in networks that are generally not hierarchies and
the necessary creation of knowledge entailed by the spe-

cialized task and its integration (recombination) in many

products and services [5], [17]. In this form, the ancient

concept of the division and coordination of labor gains new

life as a modern process, at play around us everywhere. In

this modern form, it emphasizes information and commu-

nication in evolving complex networks. Many of the most

modern socioeconomic phenomenaV from online collec-
tive intelligence to the share economyVdepend in funda-

mental ways on these processes.

In this light, the creation and interdependence of

knowledge requires the development of complex and

dynamical network structures as an evolving process that is

sketched in Fig. 1. I start, for simplicity, by imagining a

situation where a set of nodes (people, or other

informational objects, books, computers) each approxi-
mately replicates the same functions [denoted by different

colors in Fig. 1(a)]. An example is that of a subsistence

human society [20], where despite some specialization of

labor by sex and age, all households perform essentially the

same tasks of hunting, gathering, or small-scale farming.

The information content of such societies is replicated in

each nuclear family [Fig. 1(a)] as they survive as individual

units in interaction with their natural environment. Thus,
the total information content in this situation is that of the

typical unit, because each node is redundant (nondiffer-

entiated) with all the others. This is why, in this type of

disconnected network phase, information does not accu-

mulate with increases in system size (nodes).

The situation changes radically as large-scale connec-

tivity becomes common [Fig. 1(b)] [17]. It is then possible

for nodes to differentiate and specialize on different tasks,
relying on their functional complementarities to preserve

overall function at the network level. So, for example, in

modern urban societies most of us do not grow our own

food or harvest energy and instead devote our time to

extremely specialized tasks, often in services and in learn-

ing and organization. We rely on a vast number of different

people (most of them strangers) for our survival in terms of
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the most critical products and services we need daily (food,

water, etc.). In this situation, the information content of a

network can scale up with the size of the society N as

individual differentiation becomes the norm. Thus, even if

the size of a network N were to remain constant, its infor-

mation content will now be much larger, roughly propor-

tional to the number of its nodes, naturally conferring

economic and technological advantages to large connected
systems. This effect is observable in some specific net-

works, such as associate memory models like Hopfield

networks where it can be derived formally [40]. In real

human societies, differentiation is typically not fully ex-

tensive (many people perform the same professions, for

example). To deal with this issue, Adam Smith originally

posited that (economic) specialization is in fact propor-
tional to the ‘‘extent of the market’’ [16], [17], [34]. The

factors that may limit functional differentiation of nodes in

a network and consequently its potential information

capacity, productivity, and diversity will be discussed fur-

ther below together with a simple quantitative framework

that makes more precise the qualitative picture introduced

in this section.

B. Quantifying the Benefits of Connectivity
Having stated the general benefits of increasing net-

work connectivity in terms of gains in information and

productivity, I now quantify these effects in general terms,

as functions of network size. I develop a simple ‘‘mean-

field’’ model of these processes, where only average

properties are taken into consideration. The development

of a full statistical model, capable of accounting for the
effect of fluctuations on the transition between network

phases, requires additional technical development and will

be pursued elsewhere.

Let us begin with the simpler disconnected phase; see

Fig. 1(a). In this regime, the system is very simple and can

be characterized by quantities that are independent of

network size, because the nodes lack large-scale connecti-

vity. As such we denote the constant connectivity per node
(degree) k ¼ kD, the constant information content i ¼ iD,

and the constant productivity per person w ¼ wD; see

Table 1. Two related quantities are also worth specifying:

the number of functions per person (a measure of individ-

ual specialization, e.g., the number of professions per per-

son) d ¼ dD and the average time spent on each task

t ¼ tD ¼ T=d, where T is the total activity time for an

individual. As discussed above, I assume that in this phase,
each node is a ‘‘subsistence generalist,’’ defined by low

connectivity and a large number of tasks it needs to per-

form to survive. As a consequence, the time per task is

small, leading to low productivity as each task is associated

with relatively small amounts of learning. Though the total

knowledge (information) of each node may be large, it is

redundant with other nodes performing similar tasks, and

the information content of the system is low and of order
iD. In other words, because of low connectivity, individual

functional differentiation is minimal and learning (infor-

mation acquisition) is very slow, as a result of a very small

amount of time spent on each task, even if network size N
is large. Fig. 1(c) summarizes this situation (constant

iD;wD on N) by the horizontal red line.

When connectivity and interdependence become possi-

ble, a network can express very different properties for the
same size N. Let us for a moment ignore the costs of

creating and maintaining connectivity, which are dis-

cussed in Section II-C. Then, let us suppose further that

connectivity per capita increases with N. For illustration, I

assume that it varies according to a scale invariant function

(a power law) of the form kðNÞ ¼ kCN�, where the

amplitude kC depends on technology and time (and cost)

Fig. 1. Structural transformation in informational networks resulting

from interconnection and knowledge specialization. The disconnected

phase (a) is characterized by low levels of connectivity, functional

redundancy (duller colors), low productivity, and slow learning; see

Section II-B. As connectivity becomes less costly, a transition to a new

phase (b) is possible, characterized by increasing connectivity with

scale, accompanied by greater complementarity of functions (brighter

colors), growing productivity, and fast overall learning at the

individual and network levels. In this phase, nodes become

functionally interdependent and exchange information, goods, and

services (curved arrows). (Only the arrows in which the green node

participates are shown, for simplicity.) (c) Nature of the transition

(see Section II-D): Small systems where communication and exchange

are costly will tend to be in the disconnected phase, while larger

systems with inexpensive connectivity will tend to be in the connected

phase and under continuous growth of information and productivity

with network size N. Thus, as size or technological circumstances

change, disconnected systems may become susceptible to entering the

connected phase and vice versa. As this happens, the transition may be

gradual, along the thick line, or sudden (arrows). Metcalfe’s limit refers

to the situation when productivity and information increase linearly

with system size; see Table 1.
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and the exponent (elasticity) � is the rate of increase in

connectivity with the size of the network and is assumed to

be independent of N. This scale invariant form is predicted

by urban scaling theory [41] and is observed in urban cell

phone networks [42].

Then, I will assume that the number of functions ac-
cessible to each individual remains constant but becomes

increasingly available to him/her through network con-

nections [Fig. 1(b)], such that kðNÞdðNÞ ¼ A, which is in-

dependent of N. This is necessary because specializing

individuals require access to functions they once main-

tained, e.g., a car mechanic needs access to a food producer

and vice versa. This means specifically that the rate of in-

crease in average individual specialization with system size
equals in magnitude that of the increase in connectivity:
_k=k ¼ � _d=d, where the dots denote derivatives with re-

spect to N. This quantitative behavior is observed, for ex-

ample, in patterns of professional specialization and social

connectivity in U.S. cities [17], and may already be present

in simpler human societies [43]. Then, we conclude that

dðNÞ ¼ A=kðNÞ ¼ dCN��, so that each individual on aver-

age specializes in a smaller number of tasks. As a result he/
she spends on average an amount of time on each task,

tðNÞ ¼ T=dðNÞ ¼ tCN�, which increases proportionally to

connectivity. Finally, we should expect that the total new

information acquired (human capital) is proportional to

the time on task, that is, iðNÞ / tðNÞ ¼ iCN�, and that

productivity is proportional to such information,

wðNÞ / iðNÞ ¼ wCN�, and thus, ultimately to connectivity.

These patterns are summarized in Fig. 1(c), as the ris-
ing green line, and in Table 1. They hold for any other

dependence of connectivity on size, not just the illustrative

power law, and express how a dynamical phase of network

growth can take hold and lead to associated increases in

overall information content, functional diversity, and

individual productivity.

I can now also show how this reasoning maps to net-

work effects and give an estimate of the value of connec-
tivity. According to the so-called Metcalfe’s law [44]: the

value of connectivity is proportional to the square N2 of the

number of connected nodes N in a network. Up to a multi-

plicative constant, this is the maximum number of

connections that can be realized in a network of N nodes.

This result is readily obtained from the reasoning given

above in the particular case when the parameter �! 1,
implying that each individual is connected to all others, and

that, as a consequence, k ¼ N � 1, and the total number of

connections K is K ¼ Nk=2 / NðN � 1Þ=2 � N2. I will

refer to the regime � ! 1 as Metcalfe’s limit; see Fig. 1(c).

Though Metcalfe’s argument captures the potential

maximum number of connections in a network, it is nei-

ther a direct measure of value nor a realistic assignment of

the number of nodes that can actually be connected in a
large system [41]. In order to derive the extent of con-

nectivity in large networks, we must consider its costs, to

which we now turn.

C. Costs of Connectivity
Connectivity is generally costly. A sense of the problem

can be obtained by considering connectivity as a physical

act of exchange. This exchange may involve the motion of

physical goods, the transportation of people, or the trans-

mission of information. Thus, each process of connectivity
is mediated by a current j. In all macroscopic networks,

there are dissipative energy losses associated with such

exchanges that depend on the current as C ¼ Rj2. Here R is

a resistance, set by whatever dissipative processes are re-

levant for the given exchange (e.g., friction in transpor-

tation or resistive losses for electricity) [41]. A well-known

example is energy dissipation in electrical circuits (Joule’s

law). This reasoning also shows that energy costs are in-
evitable in irreversible exchanges (as a consequence of the

second law of thermodynamics), whereas the translation of

these costs into other units, such as money, may vary more

widely, for example, as a result of the price of energy and

choices of technology.

Thus, in our networked model, we expect a dissipative

cost associated with each connection (as an independent

Table 1 Characteristics of Complex Informational Network Phases
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current) proportional to the square of the intensity of the
exchange times the relevant resistance parameter. The

result in our network setting is that the cost per node

cðNÞ ¼ Rj2kðNÞ ¼ cCN�. (This becomes cðNÞ ¼ cCN in

Metcalfe’s limit.) Thus, the ratio cC=kC measures the

average cost per connection: It is independent of the size

of the system, but is in general a function of time through

technological and organizational innovations.

D. Cost-Benefit Analysis and Network Transitions
Finally, we can assemble the general picture of benefits

and costs of connectivity in informational networks to de-
rive average expectations about when the connected net-

work phase and its associated dynamics of learning and

increasing productivity may take place.

First, let us consider the net gains wnðNÞ from connec-

tivity as wnðNÞ ¼ wðNÞ� cðNÞ. Using the expressions

derived above, I can write wnðNÞ as

wnðNÞ ¼ ðwc � ccÞN� ¼ wC

kC
� cC

kC

� �
kðNÞ:

From this expression, we immediately see that the
connected network phase does not always pay off; see

Fig. 1(c). In particular, if the costs exceed the productivity

per connection, cC � wC, the behavior typical of the con-

nected phase cannot develop at all. Only in the opposite

regime, when connectivity becomes inexpensive in units of

productivity, does this network become able to probe its

dynamical learning regime and explore the advantages of

the division and interdependence of labor and informa-
tion. To see the nature of this transformation more clearly,

I note that the transition should occur when net

productivity in the connected phase can be larger than in

the disconnected phase, or, mathematically

wnðNÞ>wD!kðNÞ> wDkC

wC�cC
,N>

wD

wC�cC

� �1
�

where I used the power-law parameterization of kðNÞ in

the last expression. Otherwise, a different finite threshold

for N would result in similar qualitative behavior. This

condition shows that, everything else being equal, the

transition to the connected phase is inexorable as network

size N increases. Although this phenomenon may be re-
lated to ideas of development through population pressure

[45] and circumscription theory [46], clearly the key to

these structural changes in complex networks can be more

general and the underlying necessary conditions likely

more subtle. However, this transition can also be produced

at fixed size N as the tradeoff between advantages and costs

of connectivity in the connected phase shift. Thus, this

transition may be smooth or sudden (as in a tipping point)
depending on whether the system is able to immediately

capitalize on the new available dynamics of connectivity,

or remains temporarily stuck in the disconnected phase

even as favorable circumstances for the shift develop [47].

It should also be clear that, while the mean-field model

introduced here allows us to anticipate a transition

between the two network phases, it does not reveal its

detailed nature. For example, we cannot tell whether this
transition is smooth, or first or second order, in the

language of physics. Such questions will require a full

statistical approach to the two network phases.

The role of technology in complex informational net-

works now starts to come into focus: by creating a positive

benefit-to-cost tradeoff for connectivity across the largest

possible realm of interactions, technological change can

place networked systems on a path of collective learning
and of gains in terms of diversity and productivity. Tech-

nologies here should be understood in the broadest possi-

ble sense, from cultural and political institutions that help

realize the benefits of social interdependence to fast com-

puting, or large memory and bandwidth. Most often,

transformative technologies must operate both in the

purely technological realm and on extant social conditions.

III . EXAMPLES: CITIES, GLOBAL
ONLINE NETWORKS, AND WIKIPEDIA

To anchor some of these concepts, I now discuss some of

the network properties of a few important sociotechnical

systems, from cities to online informational networks.

A. Cities
Cities are first and foremost social networks of people.

Throughout most of human history humans lived in small,

self-sufficient groups and assumed stereotypical roles

within these groups, adapted to their natural environ-

ments, e.g., as hunter-gatherers or subsistence farmers

[Fig. 1(a)] [20]. This small socioeconomic connectivity and

lack of strong interdependence is a general characteristic

of simple human societies, from those early in history to
those that remain rural and ‘‘underdeveloped’’ today. Thus,

the (more) disconnected state of human societies is visible

both cross-sectionally from large cities to the smallest

towns, across places characterized by very different levels

of socioeconomic development and over time. It is an im-

portant question whether the change from this immemo-

rial way of life to modern interconnected societies can be

understood as a true network transition of the type intro-
duced above. The apparent stability of simple subsistence

societies suggests the hypothesis that maybe it is.

In contrast to disconnected networks, urbanizing so-

cieties are characterized by growing settlements where

frequent social interactions with many different people

become possible [48], [49]. Through co-location and faster

internal transportation, cities reduce the cost of social
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connectivity and set in motion profound structural

transformations in human societies [49], [50]. Thus, al-

though the character of particular cities at specific times in

history may appear more specific, urban centers are at heart

the general means to the open-ended processes of human

social development possible in the networked phase of

social systems. In this light, as I emphasized elsewhere [41],

[49], cities are the ultimate general-purpose ‘‘social
reactors’’ [41], [49].

Because of the growing availability of data on urban

quantities in cities all over the world, we are now able to

measure quantitatively the expression of these processes

and write them in terms of the framework developed in

Section II. To set the stage, consider the results shown in

Fig. 2, for the scaling of total road surface and gross

domestic product (GDP) of U.S. metropolitan statistical
areas (a definition of cities as interacting networks); see

[41] and [50]. Both these quantities show average scaling

behavior according to an expression of the form

YðN; tÞ ¼ Y0ðtÞNb

with b ¼ 1þ �, where � is the exponent introduced in the
previous section. This follows from the fact that per capita

quantities (denoted by lower case letters) and total

quantities are proportional up to a factor of N, e.g.,

Y ¼ Ny. Y, expressed as GDP, is a measure of (economic)

output, and its main component, wages, which measures

labor productivity, scales in the same way [41]. The plots of

Fig. 2 show that the value of the exponent � ’ 1=6, as

predicted by theory [41], is based on the integrated

modeling of cities as social networks embedded in

infrastructural space and subject to both connectivity

gains and costs as a result of social interactions in space.

In this framework, the exponents and prefactors can be

computed explicitly from models of the general geometry

of urban infrastructure; see [41] for details. Briefly, in this

context, the exponent � measures the rate of densification
of people in public spaces (proxied by the infrastructure

network volume Vn), n ¼ N=Vn ¼ n0N�, where n is den-

sity. Vn, shown in Fig. 2(a), is in turn the result of building

an infrastructure network with the general properties that

1) it connects all spatial parts of the city together; and 2)

remains open-ended in the sense that it can be expanded

gradually as the city grows. While some aspects of this

calculation are specific to cities as spatial structured sys-
tems, I want to emphasize that it is the increase in density

in some space that promotes greater average connectivity

per unit time, kðNÞ � nðNÞ � N�, as we observe directly

in cities via cell phone connectivity [42]. I show in

Sections II-B and II-C that this effect persists in online

networks, with different exponent values, where no explicit

reference to physical space is necessary.

Second, the value of prefactors such as Y0ðtÞ is the result
of the optimization of the cost benefit structure of gains

minus costs following from social connectivity across all

dimensions of life, that is, of the factor wC � cC. In cities, it

can be shown that both benefits and costs of interaction

depend on certain parameters associated with mobility (of

people, goods, and information), and that these in turn are

a function of the adaptation of human behavior to the

characteristics of infrastructure and vice versa [41]. As a

Fig. 2. General scaling properties of urban networks (adapted from [41]). (a) Total lane miles (volume) of roads in U.S. metropolitan areas (MSAs)

in 2006 (blue dots). Data for 415 urban areas was obtained from the Office of Highway Policy Information from the Federal Highway

Administration. Lines show a best fit to a power-law scaling relation with b ¼ 0:85 (95% CI ¼ ½0:81;0:89�, R2 ¼ 0:65). (b) Gross metropolitan

product of MSAs in 2006 (green dots). Data obtained for 363 MSAs from U.S. Bureau of Economic Analysis. Lines describe best fit (red) to

data, b ¼ 1:13 (95% CI ¼ ½1:10; 1:16�, R2 ¼ 0:96). The black line shows a linear relation with unit slope. The yellow line shows the theory’s

prediction [41]. The inset shows the estimate of G for 313 U.S. MSAs, measured as the product of GDP and road volume, both per capita.

Observed values of G for different cities are city size independent and cluster around a mean value expressing maximum net productivity,

bounded by a maximum (green line) as predicted by the theory.
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result it can be shown that the analog quantity to wC � cC, G
in Fig. 2(b) (inset), is city size independent and has a well-

defined maximum value across cities. Different cities man-

ifest a slightly different value of their G, around this value

(dots in the inset). In an analogous way, we should expect

that different instantiations of networks in the connected

phase should manifest values of their wC � cC around a

mean value.

Finally, while it remains difficult to find direct proxies
for learning and the specialization of knowledge in cities,

one can measure dðNÞ through the consideration of the

statistics of employment across a large number of different

of professional occupations [17]. This analysis, applied to

U.S. metropolitan areas, confirms the expectation for

dðNÞ � N�, with � � 1=6, and of labor productivity (mea-

sured through wages) exhibiting the property that

wðNÞdðNÞ ¼ A, a constant independent of N, and thus
that wðNÞ � N�, as hypothesized above. Similarly, the so-

cial connectivity of urban social networks can be estimated

at the individual level using cell phone networks [42],

resulting on the scaling behavior of connectivity consistent

with these observations, as predicted by theory [41].

The consistency of these ideas must continue to be ex-

plored empirically, especially in different nations and

through more microscopic studies. These results do, how-
ever, provide an important illustration of the dynamics of

the connected network phase proposed above and of its

development over space and time in circumstances that are

fundamental to understanding human sustainable devel-

opment, technological change, and economic growth.

B. The Internet and the World Wide Web
Over the last 20 years, progress in computing and te-

lecommunication technologies has enabled unprecedented

growth in connectivity between distant people. These

technologies are also creating networks of knowledge that

are, in specific senses, external to individual humans and

their social networks and where information is instead

encoded in webs of interlinked ‘‘documents,’’ without ex-

plicit spatial location. The Internet and the World Wide

Web (WWW) embody these global changes and continue
to evolve from more specific and smaller networks to new

and more pervasive realms.

It is, therefore, interesting to study the evolution of

these networks in light of the general concepts developed

above: To what extent are the Internet and the WWW

examples of the connected phase dynamics of informa-

tional networks? What sort of productivity and learning

are they creating?
Such enterprise is fraught with conceptual caveats and

empirical limitations, some of them discussed in here

below and in Section VI. The main difference from the

analysis of urban data is that we do not have the ability to

perform cross-sectional analysis with the Internet or the

WWW, and must hope instead that their time evolution

can give us a sense of the size dependence of their

informational properties. If, in addition to growth in their

size, the prefactors change exponentially in time, however,

they will contribute to the magnitude of the exponents and

are likely to result in their overestimation.

Perhaps surprisingly, the actual size and connectivity of
these networks remain largely unknown both because they

have become immensely large, but also because of their de-

centralized and bottom-up dynamics (see data sources in

Section VI). Mapping them requires in practice that the

entire network is visited, node by node, in order to estimate

their global structure. Nevertheless, several surveys give us a

sense at least of the broad structural dynamics of these

networks as their user-base has increased over time. Fig. 3
shows the number of DNS hosts and two estimates of the

number of webpages as functions of the total worldwide

online population, in analogy to Fig. 2 for cities. The first

interesting feature of Fig. 3 is that, in both cases, we observe

clear superlinear scaling ðb > 1; � > 0Þ. While this sort of

behavior for DNS hosts suggests an increase in task load (cost)

on servers with each additional person online, the growth in

number of pages is especially interesting as it suggests a (more
strongly superlinear) increase in content, and thus perhaps in

the productivity of the system. The number of total webpages

(which we should think functionally as links between users),

in particular, exhibits scaling with an exponent consistent

with Metcalfe’s law. However, this webpage count is plagued

by certain spurious effects related to incentives to artificially

create pages (see Section VI) so that the number of active

sites, which scale with a smaller superlinear exponent, may
be a more accurate measure.

Fig. 3. Scaling of global computer networks with online population

size. The size of the Internet, measured in terms of DNS hosts (blue) is

characterized by an exponent 1.28 (95% CI ¼ ½1:22; 1:34�, R2 ¼ 0:99),

while the growth of the WWW, in terms of an estimate of total

webpages (green), is characterized by an exponent 2.03

(95% CI ¼ ½1:88; 2:17�;R2 ¼ 0:98) and of active pages (red) by an

exponent 1.68 (95% CI ¼ ½1:55; 1:82� R2 ¼ 0:98). In all cases, the size of

online networks has been growing superlinearly with the number of

Internet users, indicating that more pages and more computation is

effectively used per capita as the network grows, much like in other

open-ended social systems (e.g., cities). Exponents are manifestly

different from those observed for cities.
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In any case, it is interesting that we infer from these
results that the number of webpages has grown with online

population size at a rate much faster than social connec-

tions with the population size of urban agglomerations. In

this sense, each individual may typically have access to

more pieces of information online and be able to specialize

on his/her own production to a larger extent.

To my knowledge, this is the first demonstration of

pervasive superlinear scaling of the Internet and the
WWW with online population size. However, these mea-

sures remain very rough estimates of the growth of these

networks, and it would be very interesting to revisit the

present results with better data. In addition, it would be

desirable to obtain other measures more directly related to

online connectivity, information, and individual attention

and of their evolution over time.

C. Wikipedia
Another, more particular online network example,

where more thorough measures of network properties are

available, is Wikipedia, the online encyclopedia. Wikipedia

started in January 2001 and has grown spectacularly even

since, comprising currently of over 30 million articles

across its large set of different languages.

Wikipedia is not a general-purpose network aimed at
increasing general productivity or connectivity. Its goal is

to create encyclopedia articles collaboratively, through the

contributions of anyone who wishes to participate. In this

sense, nodes, treated as articles, do increase their informa-

tion content over time through the intervention (edits) of

human contributors. Thus, even though nodes do not learn

per se, we can treat them in analogy to the scheme devel-

oped above, with humans being a part of the connectivity
structure (and bearing some of the costs) of creating and

growing the network and its nodes.

The growth of the body of cross-referenced articles

hence created does then provide us with a picture of how

information as a whole increases and how its productivity

in terms of impact may change in tandem. This happens in

two ways: 1) through the iterative process of improvement

of each document (which is a process of collective learning
encoded as the article); and 2) through the linkages (con-

nectivity) that an entry establishes to others, both internal

and external to Wikipedia. Thus, it is this network of doc-

uments that encodes information and it is its change that

represents the process of learning. Although readers of

Wikipedia may also benefit (and learn) from this encoding

of knowledge, contributors to Wikipedia may not individ-

ually possess all the knowledge that a single page reflects
(that is the point of the collaborative model). This turns

the process of learning in cities (and the parallel sug-

gestive structure of scaling in the WWW) upside down

and suggests that the best measure for the size of

Wikipedia are articles and that their connectivity is sup-

plied by human contributors as well as document links, not

vice versa.

If we adopt this perspective, we find scaling results that

broadly agree with those we invoked for cities and the
WWW, but with different exponents. Fig. 4 shows how the

network connectivity, measured in terms of human contri-

butors as well as internal and external links, grows super-

linearly with the number of articles. Fig. 5 helps justify the

identification of Wikipedia contributors with page links, by

showing that these scale linearly (proportionally) to each

other. Fig. 5 also shows that the number of edits in

Wikipedia is proportional to the number of contributors,
supporting the assertion that the cost of connectivity per

link is constant in N, as is human effort in cities [41].

Finally, Fig. 6 shows that a proxy for the productivity of an

average article (and of each contributor) increases super-

linearly, at least in terms of audience reach. This also es-

tablishes that the benefit of creating a connection (the

effort of a contributor) is outpaced by its benefits in terms

of audience reach, suggesting indeed that Wikipedia is an
informational network expressing the connected phase

dynamics.

These examples supply evidence that informational

networks typically enable payoffs that are superlinear on

the number of learner elements and that they are limited

in their growth primarily by the cost of establishing and

maintaining this connectivity. Whenever benefits outstrip

costs, these networks can connect (and in some cases
grow) explosively [Fig. 1(c)]. Eventually, they may equilib-

rate to a scale invariant regime where costs and benefits

scale in the same (superlinear) way.

Fig. 4. Contributors and external and internal links to Wikipedia

articles scale superlinearly. The number of contributors (green) scales

with the number of Wikipedia articles with exponent b ¼ 1:61

(95% CI ¼ ½1:51; 1:72�, R2 ¼ 0:99). The number of external links (red)

scales approximately in the same way with exponent b ¼ 1:59

(95% CI ¼ ½1:40; 1:79�;R2 ¼ 0:98). Finally, the larger number of

internal links (blue) scales more slowly with an exponent b ¼ 1:21

(95% CI ¼ ½1:18; 1:24�;R2 ¼ 0:99). If we interpret these quantities as

different measures of connectivity between articles, we see that they

all scale with exponents larger than those observed for social

connectivity in cities.
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IV. TECHNOLOGICAL TRENDS IN
COMPLEX INFORMATIONAL NETWORKS

Finally, I would like to discuss several scenarios for the

interplay between physical and informational networks
and the impact of changing technology on their evolution.

A. The Death of Distance? Can Cyberspace Replace
Physical Space?

I argued above that the dynamics characteristic of the

connected network phase are primary to its ‘‘means’’ or

processes. This means that whether this dynamics can be

realized in cities, where space and infrastructure play an

essential role, or online, where attention and time are

apparently more relevant ‘‘spaces,’’ is a secondary

consideration.
Except, of course, to the extent that one of these modes

overcomes disadvantages of another and may hence

substitute it altogether. In this light, a common question

is whether the Internet and information and

telecommunication technologies (ICTs) can eliminate

the need for cities [51], or, instead, whether these very

different networks play synergetic and mutually supportive

roles. The hypothesis that physical proximity becomes
unnecessary is often described by the concept of the ‘‘death

of distance’’ [51]–[56].

Research over the last decade has pursued answers to

these questions with mixed results. Two general findings

seem to stand out and are worth noting: 1) online and ICT

networks are local; and 2) the uses of the Internet and of

local social networks tend to be integrated and tend to

complement, rather than substitute one another. On the
first point, it has been found empirically that more online

content is available in larger cities [52], [53], so that these

new technologies tend to reinforce rather than replace the

connectivity dynamics of larger places. This means in

particular that maps, services, etc., are disproportionally

available online if they stem from larger cities. In this vein,

it is probably interesting to remark that previous introduc-

tions of informational and telecommunications technolo-
gies, from the newspaper and the postal service to the

telegraph and the telephone, were always skewed toward

larger environments, and not simply for economic reasons

related to their cost [25]. On the second point, most

findings are both intuitive and obvious: whether for

shopping and commerce [53]–[55] or for telecommuting

[56], new ICTs are extremely useful in helping organize

the complex life patterns typical of larger cities, including
the fine temporal coordination involved in meetings. In

this sense, new informational technologies are most

useful in the most intensely connected network phases,

which typically are to be found in large cities [41],

precisely because they lower the cost of their pervasive

connectivity.

Despite these findings, the question remains whether

vastly improved telecommunication technologies, capable
of reproducing the nuances of sharing space and meeting

face to face, can one day replace personal travel [56]. While

there is no reason to exclude such possibility, my guess is

that all connected networks will tend to mesh together and

reinforce one another and that substitution is only possible

when new modes fully include and transcend the ad-

vantages of previous modes of interaction and learning.

Fig. 6. Audience reach of contributors to Wikipedia increases

superlinearly. The green line shows the best fit to Alexa online reach

surveys, which estimates the number of Internet users who read

Wikipedia, with b ¼ 1:10 (95% CI ¼ ½0:95; 1:25�, R2 ¼ 0:97). The blue

line shows the best fit to the reach in terms of total worldwide online

population with b ¼ 1:31 (95% CI ¼ ½1:23; 1:38�, R2 ¼ 0:98). The blue

line is steeper than the green line because it accounts for the growth of

the online population versus the total world population, which in 2013

is estimated at 39%.

Fig. 5. Total number of edits (green) and external links (red) to

Wikipedia articles is proportional to the number of individual

contributors. The green line shows the best fit to the number of edits

versus contributors with exponent b ¼ 1:00 (95% CI ¼ ½0:97; 1:03�,
R2 ¼ 0:99). The red line shows the best fit to the number of

external links versus contributors with exponent b ¼ 0:99

(95% CI ¼ ½0:95; 1:03�;R2 ¼ 0:99). The black line shows exact

proportionality b ¼ 1, for comparison.
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B. Technological Change, Connectivity, and
Information in Constant-Size Networks

In the framework of Section II, I entangled the issue of

increases in the information content and productivity of a

networked information system together with changes in its

size N. Here, I briefly discuss how these processes can take

place independently, that is, even when N is constant. The

key issue is the variation in the remaining parameters,

prefactors, and exponents. This can generally be captured
by their time dependence.

Consider then changes in the baseline productivity per

social connection wC and in the costs of connectivity cC.

The first can be affected by the adoption or improvement

of new production methods or increased learning rates,

while the latter may change due to improvements in

transportation or through the development of social and

political institutions that handle conflict resolution more
effectively [41]. Thus, the crucial consideration is how

baseline net productivity wC � cC changes over time.

An increase in this quantity moves the green curve in

Fig. 1(c) up, shifting its intersection with the horizontal line

to the left and consequently makes the connected network

phase more advantageous sooner; that is, at smaller network

sizes N. Conversely, a decrease in the baseline net produc-

tivity moves the green line down and reduces the attrac-
tiveness of connectivity, delaying its onset to larger N.

Thus, we see that certain temporal shifts in these base-

line parameters are sufficient, at fixed N, to produce the

transition to large-scale learning and growth in complex

networks. This is analogous to ideas of intensive economic

growth [12] through technological change in theories of

endogenous economic growth [14]. Endogenizing growth,

in turn, would require additional models for how N changes
over time and its associated costs, and whether a partial

allocation of productivity to such costs can generate a

virtuous cycle of growth and learning, or will instead fizzle

out. Such elaborations are left to future work.

C. Resilience of Connected Informational Networks
Finally, it is important to discuss some of the pitfalls of

the simple dynamics of differentiation, learning, and
growth described above. A more complete consideration of

other important factors, not treated in detail in this paper,

is addressed in Section V.

First, the path of increasing individual specialization

may, in some circumstances, lead to static arrangements

that stall processes of open-ended learning and productiv-

ity increases. In real circumstances in human societies,

extreme labor and knowledge specialization are sometimes
only possible inside vertically integrated organizations

(hierarchies), such as those of large firms and of universi-

ties and research laboratories [57]. Such environments can

promote the stability and continuity necessary for the

pursuit of more speculative R&D or for extreme special-

ization, say in an assembly line, in ways that economic

markets often do not support. The danger of this internal

specialization is that knowledge hence created remains
tied to its very specific context and cannot be used in new

generative ways in large networks [58]. In science and

technology, specific communication channels, such as the

publication of scientific manuscripts and patents, help

bridge this gap, but much knowledge still remains tacit and

local. This difficulty may prove more severe in large-scale

manufacturing where factory-floor workers are typically at

once very specifically matched to their tasks and redun-
dant with each other and with automated solutions. In

these circumstances, labor is not free to specialize further,

or to learn in ways that may benefit the individual over the

long term or the networked system as a whole.

This creates an apparent contradiction: While the crea-

tion and full use of specialized knowledge often requires

protective environments inside stable organizations, its

value depends on broad openness and exchange at the net-
work level. These two processes, taken together, suggest

that dynamics of formation and dissolution of organizations

(such as hierarchies) are likely necessary for new infor-

mation to be created and for it to realize its full value. This

concept is partly captured by the idea of quasi-decompos-

ability of hierarchies [59]. This can be achieved through

open and dynamical labor markets, entrepreneurship, and

processes by which knowledge can be accumulated in
stable but open ways, for example, through open platforms,

such as in online Wikis and open-source repositories.

A second issue relates to the resilience of the connected

network phase. It should be clear that the disconnected

phase, though it is characterized by low productivity and

information content, is generally very robust to the loss of

nodes. This is a direct result of its informational redun-

dancy at the node level, a mechanism that is often em-
ployed in engineering solutions to ensure against random

local failures [60].

The source of resilience of the connected state emerges

not so much from its structure, but rather from its dyna-

mics: In this phase, the loss of nodes implies some loss of

information, and the loss of connections may reverse the

process of learning; but these processes are, to some extent,

reversible. The idea is that being ultimately dynamical the
system can adjust to a loss in system size by tracing its

evolution backward. This implies some loss in knowledge as

well as some degradation of productivity, but still maintains

the system ready to bounce back and reevolve again.

Thus, the question of resilience in informational net-

works is whether, upon a shock, the connected system can

degrade gracefully and bounce back quickly. Anecdotal

evidence from recent disasters in cities suggests that peo-
ple can take up many of the functions that are usually

performed by infrastructure and services [61]. Examples

are walking or bicycling as a substitute to mass transit. But,

the possibility remains that fast and reversible adaptation

may not always be possible and that sudden, hard to

reverse transitions may occur, accompanied by the

destruction of network connectivity and of critical
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information. The exploration of such important phe-
nomena requires further development of the ideas

discussed here in terms of their statistical dynamics.

V. DISCUSSION AND CONCLUSION

In this paper, I proposed general and intentionally very

simple dynamics of network development and showed that

under certain circumstances nodes capable of learning may
remain disconnected, redundant, and relatively unproduc-

tive, while in other situations, they may develop pervasive

connectivity and embark on an open-ended trajectory of

growth and development.

These ideas were largely conceived in the context of

cities, though I argued here that they likely reflect more

fundamental concepts common across several disciplines

and apply also, at a different scope and speed, to worldwide
computer networks and webs of information, such as the

Internet and Wikipedia.

While I hope that the framework developed here pro-

vides a simple integrated perspective on the open-ended

evolution of complex informational networks, much re-

mains to be done to further develop these ideas theoreti-

cally, to test them empirically, and to make them useful in

guiding policy and technological development.
Regarding theory, a development of more formal defi-

nitions of information and learning processes and their rela-

tionship to network structure is clearly necessary. This issue

is already reasonably well developed technically on some

fronts, such as in information theory [40], [62], Bayesian

networks [63], and related artificial neural networks [33].

Nevertheless, the concept of node differentiation and learn-

ing through changes in their internal states occurring in
tandem with related changes in network connectivity may

provide new formal developments in such models, which

remain to date incapable of the kind of learning that is

common for humans and their social networks [33].

On this vein, the consideration of network structures

that go beyond changes in average connectivity will almost

certainly be necessary. Connectivity and learning costs, as

well as productivity increases, may be facilitated by the
creation and dissolution of formal organizations, such as

firms, civic associations, and other local and online com-

munities. Such entities are characterized by complex inter-

nal organization, often in the form of emergent hierarchical

structures. Consequently, I expect that, besides average

increases in connectivity, local network structures should

play an essential role in the development of any real system.

It may be interesting to develop a version of the quantities
considered here that is local within larger networks (such

as firms inside markets) and thus gain access to the more

explicit dynamics of spreading processes that may result

from successful local adaptations as they gain a foothold

across larger networks.

Finally, I purposefully avoided explicit considerations

of the cost and benefits of learning and information. This is

an old problem, bypassed in the original formulation of
information theory [40], [62] but essential to the under-

standing of evolution and development in complex sys-

tems. Such costs and benefits can be measured in many

different units, such as money or energy. However, it

seems obvious that such measures fail to capture much of

the dynamics of online networks. In these cases, different

measures of value may be necessary, such as, for example,

attention (i.e., human time) [64], but it remains unclear
whether they are sufficient.

A crucial issue going forward is our ability to under-

stand and predict quantitatively how these connected

informational networks will evolve, including the

detailed consequences of specific new technologies. At

present, in society and in technology, we are dependent

on human creativity and intervention to achieve most

processes of learning and knowledge recombination.
Understanding these processes in more integrated and

detailed ways will ultimately create a new science of

complexity that can explain massive evolving informa-

tional networks such as ecosystems, cities, and the World

Wide Web. It will also create a world of more intelligent

technologies, able to coevolve and coadapt in connection

with humans and with other natural and artificial

networked complex systems.

VI. MATERIALS AND METHODS

Data on the size of the WWW (the number of total websites

and the number of active websites) shown in Fig. 2 were

obtained through the Web Server Survey by Netcraft

(news.netcraft.com). The methods for this survey are

described at www.netcraft.com/active-sites, including the
distinction between all sites and active sites. The need for

this distinction, which is aimed at excluding some websites

created automatically and others targeted at increasing

search engine visibility, was less crucial in the early years of

the WWW. The size of the Internet, measured by the num-

ber of domain name system (DNS) hosts, was obtained

from the Internet domain survey by the Internet Systems

Consortium (ftp.isc.org/www/survey/reports/2013/07).
The number of worldwide people online was obtained

from estimates in the International Telecommunications

Union annual reports (www.itu.int) in percent and con-

verted into a number using estimates of the world’s total

population obtained from geohive (www.geohive.com). I

emphasize that the nature of most measurements of the size

of the WWW, the Internet, and online population is obtained

through surveys and may be subject to incompleteness and
biases. Wikipedia size and usage data were obtained from

online Wikipedia statistics (stats.wikimedia.org). h
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INV ITED
P A P E R

Overlapping Communities
Explain Core–Periphery
Organization of Networks
The paper presents a new paradigm for uncovering the modular structure of

complex networks.

By Jaewon Yang and Jure Leskovec

ABSTRACT | Networks provide a powerful way to study

complex systems of interacting objects. Detecting network

communitiesVgroups of objects that often correspond to func-

tional modulesVis crucial to understanding social, technolog-

ical, and biological systems. Revealing communities allows for

analysis of system properties that are invisible when consid-

ering only individual objects or the entire system, such as the

identification of module boundaries and relationships or the

classification of objects according to their functional roles.

However, in networks where objects can simultaneously be-

long to multiple modules at once, the decomposition of a

network into overlapping communities remains a challenge.

Here we present a new paradigm for uncovering the modular

structure of complex networks, based on a decomposition of a

network into any combination of overlapping, nonoverlapping,

and hierarchically organized communities. We demonstrate on

a diverse set of networks coming from a wide range of domains

that our approach leads to more accurate communities and

improved identification of community boundaries. We also

unify two fundamental organizing principles of complex net-

works: the modularity of communities and the commonly ob-

served core–periphery structure. We show that dense network

cores form as an intersection of many overlapping communi-

ties. We discover that communities in social, information, and

food web networks have a single central dominant core while

communities in protein–protein interaction (PPI) as well as

product copurchasing networks have small overlaps and form

many local cores.

KEYWORDS | Community detection; core–periphery structure;

ground-truth communities; networks

I . INTRODUCTION

Networks provide a way to represent systems of interacting

objects where nodes denote objects (people, proteins,

webpages) and edges between the objects denote interac-

tions (friendships, physical interactions, links). Nodes in

networks organize into communities [1], which often
correspond to groups of nodes that share a common pro-

perty, role or function, such as functionally related pro-

teins [2], social communities [3], or topically related

webpages [4]. Communities in networks often overlap as

nodes might belong to multiple communities at once.

Identifying such overlapping communities in networks is a

crucial step in studying the structure and dynamics of so-

cial, technological, and biological systems [2]–[5]. For ex-
ample, community detection allows us to gain insights into

metabolic and protein–protein interactions (PPIs), eco-

logical foodwebs, social networks like Facebook, collab-

oration networks, information networks of interlinked

documents, and even networks of copurchased products

[6]–[12]. In particular, communities allow for analysis of

system properties that cannot be studied when considering

only individual objects or the entire system, such as the
identification of module boundaries and relationships and

the classification of objects according to their functional

roles [13]–[17].
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Here we explore the community structure of a number
of networks from many domains. We distinguish between

structural and functional definitions of communities [18].

Communities are often structurally defined as sets of

nodes with many connections among the members of the

set and few connections to the rest of the network [1].

Communities can also be defined functionally based on the

function or role of community’s members. For example,

functional communities may correspond to social groups
in social networks, scientific disciplines or research groups

in scientific collaboration networks, and biological mod-

ules in PPI networks. The basic premise of community

detection is that these functional communities share some

common structural signature, which allows us to extract

them from the network structure.

Based on this distinction one can state that the goal of

community detection is to build a bridge between network
structure and function, that is, to identify communities

based on the network structure with the aim that such

structurally identified communities would correspond to

functional communities.

In this paper, we build on the above view of network

community detection and develop community detection

methods that identify functional communities based on

their structural connectivity patterns. We identify net-
works where we can obtain reliable external labels of

functional communities. We refer to such explicitly la-

beled functional communities as ground-truth communi-

ties [18]. We study structural properties of ground-truth

functional communities and find that they exhibit a par-

ticular structural pattern. We discover that the probability

of nodes being connected increases with the number of

ground-truth communities they share. Our observation
means that nodes residing in overlaps of ground-truth

communities are more densely connected than nodes in

the nonoverlapping parts of communities. Interestingly,

we also find that assumptions behind many existing over-

lapping community detection methods lead to the oppo-

site conclusion that the more communities a pair of nodes

shares, the less likely they are to be connected [6]–[11].

Thus, as a consequence, many overlapping community
detection methods may not be able to properly detect

ground-truth communities.

Based on the above observations, we develop a new

overlapping community detection method called the

community-affiliation graph model (AGM), which views

communities as overlapping ‘‘tiles’’ and the tile density

corresponds to edge density [19]. Fig. 1 illustrates the

concept. Our methodology decomposes the network into a
combination of overlapping, nonoverlapping, and hierar-

chically organized communities. We compare AGM to a

number of widely used overlapping and nonoverlapping

community detection methods [6], [7], [10], [20] and show

that AGM leads to more accurate functional communities.

On average, AGM gives 50% relative improvement over

existing methods in assigning nodes to their ground-truth

communities in social, coauthorship, product copurchas-

ing, and biological networks.

Finally, we unify two fundamental organizing princi-
ples of complex networks: overlapping communities and

the commonly observed core–periphery structure. While

network communities are often thought of as densely

linked clusters of nodes, in core–periphery network struc-

ture, the network is composed of a densely connected core

and a sparsely connected periphery [21]–[23]. Many large

networks may exhibit core–periphery structure. The net-

work core was traditionally viewed as a single giant com-
munity, and, therefore, it was conjectured that the core

lacks internal communities [24]–[27]. We unify those two

organizing principles and show that dense network cores

form as a result of many overlapping communities. More-

over, we find that foodweb, social, and web networks

exhibit a single dominant core while PPI and product co-

purchasing networks contain many local cores formed

around the central core.
Our methodology to decompose networks into commu-

nities provides a powerful tool for studying social,

technological, and biological systems by uncovering their

modular structure. Our work represents a new way of

studying networks of complex systems by bringing a shift

in perspective from defining communities as densely con-

nected nodes to conceptualizing them as overlapping tiles.

II . FROM STRUCTURAL TO FUNCTIONAL
DEFINITIONS OF COMMUNITIES

The traditional structural view of network communities is

based on two fundamental social network processes: tria-

dic closure [28] and the strength of weak ties theory [29],

[30]. Under this view, structural communities are often

defined as corresponding to sets of nodes with many

Fig. 1. Communities as tiles. (a) Communities in networks behave as

overlapping tiles. (b) Many methods view communities as clusters

with a homogeneous edge density and thus they may break the tiles.

(c) Our AGM methodology successfully decomposes the network into

different tiles (communities).
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‘‘strong’’ connections between the members of the commu-

nity and few ‘‘weak’’ connections with the rest of the net-

work [Fig. 2(a)]. However, in many domains, nodes may

belong to multiple communities at once, and thus the

notion of structural communities has also been extended to

include overlapping, hierarchical, and disassortative com-
munity structures [6], [31]–[34].

Despite great progress in the field, we find that extend-

ing the traditional structural view to overlapping commu-

nities leads to an unnoticed consequence that nodes in

community overlaps are less densely connected than

nodes in the nonoverlapping parts of communities

[Fig. 2(b)]. (Refer to the extended version of the paper

[35] for details.) We find this hidden consequence to be
present in many existing approaches to overlapping

community detection [6]–[11].

We examine a diverse set of six networks drawn from a

wide range of domains, including social, collaboration, and

copurchasing networks for which we obtain explicitly la-

beled functional communities, which we refer to as the

ground-truth communities [18]. For example, in social

networks, we take ground-truth communities to be social
interest-based groups to which people explicitly join, and

in product networks, ground-truth communities are de-

fined to correspond to categories of products [35]. Note we

define ground-truth communities based on common func-

tions or roles around which networks organize into com-

munities [18]. Ground-truth communities are not defined

based on some observed attribute or property that the

nodes share (for example, age, gender, or hometown in a
case of a social network) [6]. The idea behind ground-truth

communities is that they would correspond to true func-

tional modules in complex networks. While the obtained

ground-truth labels may sometimes be noisy or incom-

plete, consistency and robustness of the results suggest
that the ground-truth labels are overall reliable.1

By studying the structure of ground-truth communities

we find that two nodes are more likely to be connected if

they have multiple ground-truth communities in common

(Fig. 3). For example, in the LiveJournal online social

network (Table 1), the edge probability jumps from �10�6

for nodes that share no ground-truth communities to 0.1

for nodes that have one ground-truth community in com-
mon and keeps increasing all the way to 0.7 as nodes share

more communities [Fig. 3(a)]. This implies that the area of

overlap between two communities has a higher average

density of edges than an area that falls in just a single

community [Fig. 2(c)].

Our observation is intuitive and consistent across

several domains. For example, proteins belonging to

multiple common functional modules are more likely to
interact [2], people who share multiple interests have a

higher chance of becoming friends [36], and researchers

with many common interests are more likely to

collaborate [36].

A. Defining Structural Communities as Tiles
We think of communities as analogous to overlapping

‘‘tiles.’’ Thus, just as the overlap of two tiles leads to a

higher tile height in the overlapping area, the overlap of

two communities leads to higher density of edges in the

overlap. (Fig. 1 illustrates the concept.) The composition of
many overlapping communities then gives rise to the

global structure of the network.

Conceptually, our methodology represents a shift in

perspective from structurally modeling communities as

sets of densely linked nodes to modeling communities as

overlapping tiles where the network emerges as a result of

the overlap of many communities. Our structural defini-

tion of communities departs from the strength of weak ties
theory [30] and is consistent with the earlier social

network theory called the web of group affiliations [37],

which postulates that edges arise due to shared community

affiliations.

Our findings here also have implications for the under-

standing of homophily, which is one of the primary forces

that shape the formation of social networks [36]. Homo-

phily is the tendency of individuals to connect to others
with similar tastes and preferences. Based on [30], it has

been commonly assumed that homophily operates in

‘‘pockets,’’ and, thus, nodes that have neighbors in other

communities are less likely to share the attributes of

those neighbors [as in Fig. 2(a) and (b)]. In contrast, our

results are implying pluralistic homophily where the sim-

ilarity of nodes is proportional to the number of shared

memberships/functions, not just their similarity along a

Fig. 2. Three structural definitions of network communities. Networks

(top) and corresponding adjacency matrices (bottom), where rows/

columns denote nodes and dots denote edges: (a) two nonoverlapping

communities; (b) two overlapping communities where the overlap is

less connected than the nonoverlapping parts of communities; and

(c) two overlapping communities where the nodes in the overlap are

better connected. Based on (c), we structurally define communities as

analogous to ‘‘tiles,’’ where community overlaps lead to higher density

of edges.

1Networks with ground-truth communities can be downloaded from
http://snap.stanford.edu/agm.
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single dimension. In a multidimensional network, the

most central nodes are those that have the most shared

dimensions.

III . DECOMPOSITION OF NETWORKS
INTO COMMUNITIES

In order to model communities in a network, we define the

AGM [19]. In our model, edges of the underlying network

arise due to shared community memberships [Fig. 4(a)]

[38], [39]. The AGM parameterizes each community A
with a single parameter pA. Two nodes that belong to

community A then form an edge in the underlying network

with probability pA. Each community A generates edges

between its members independently; however, if two
nodes have already been connected, then the duplicate

edge is not included in the network.

The AGM naturally models communities with dense

overlaps [Fig. 4(a) and (b)]. Pairs of nodes that belong to

multiple common communities become connected in the

underlying network with a higher probability, since for

each shared community the nodes are given an indepen-

dent chance of forming an edge.

The flexible nature of the AGM allows for modeling a

wide range of network community structures, such as

nonoverlapping, hierarchically nested, and overlapping

communities [Fig. 4(c)–(e)]. Given a bipartite community

affiliation graph and a probability pA for each community

A, the AGM allows us to generate synthetic networks with
realistic community structures, a procedure useful in and

of itself.

Using the AGM, we can also identify and analyze com-

munity structure of real-world networks. We accomplish

decomposition of a given network into communities by

fitting the AGM to the network with tools of statistical

inference. We combine a maximum-likelihood approach

with convex optimization and a Monte Carlo sampling al-
gorithm on the space of community affiliation graphs [19],

[35], [40]. This technique allows us to efficiently search for

the community affiliation graph that gives the observed

network the greatest likelihood. To automatically deter-

mine the number of communities in a given network, we

Table 1 Network Statistics and Properties of Detected Communities. We Consider the Facebook Ego-Network of a Particular User, the Full LiveJournal

Online Social Network, the Florida Bay Foodweb Network, the Stanford University Web Graph, the Literature-Curated Saccharomyces Cerevisiae

PPI Network, and the Amazon Product Copurchasing Network. Network Statistics: N: Number of Nodes; E: Number of Edges; hCi: Average Clustering

Coefficient; D: Effective Diameter; hki: Average Node Degree. Properties of Detected Communities: K: Number of Communities; hSi: Average
Detected Community Size; hAi: Average Number of Community Memberships Per Node. The Networks Vary From Those With Modular to Highly

Overlapping Community Structure and Represent a Wide Range of Edge Densities. While the Number of Communities Detected by AGM Varies, the

Average Community Size Is Quite Stable Across the Networks. Average Number of Community Memberships Per Node Reveals That Communities in the

Foodweb Overlap Most Pervasively, While in PPI and Social Networks Overlaps Are Smallest

Fig. 3. Community overlaps have higher edge density than the nonoverlapping parts of communities. Edge probability PðkÞ as a function of

the number of common community memberships k (a) in the social network and (b) in the product copurchasing network (Table 1). Results in

(a) and (b) suggest that, as nodes share multiple communities, they are more likely to be connected, which leads to higher edge density in

community overlaps, as illustrated in Fig. 2(c).
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apply techniques from statistical regularization and sparse
model estimation [35].

IV. ACCURACY OF DETECTED COMMUNITIES

Next, we aim to infer functional communities based only

on the structure of a given unlabeled undirected network.

A. Qualitative Evaluation
As an illustrative example, we consider a Facebook

friendship network of a single user’s friends [Fig. 5(a)

and Table 1]. In order to obtain labels for ground-truth

communities, we asked the user to manually organize his

Facebook friends into communities. The user classified

his friends into four communities corresponding to his

Fig. 4. Community-affiliation graph model (AGM) [19]. (a) Squares represent communities and circles represent the nodes of a network.

Edges represent node community memberships. For each community A that two nodes share they create a link independently with probability pA.

The probability that a pair of nodes u, v creates a link is thus pðu;vÞ ¼ 1�
Q

A2Cuv
ð1� pAÞ, where Cuv is the set of communities that u and v share.

If u and v do not share any communities, we assume they link with a small probability ". (b) Network generated by the AGM in (a). As pairs

of nodes that share multiple communities get multiple chances to create edges, the AGM naturally generates networks where nodes in the

community overlaps are more densely connected than the nodes in nonoverlapping regions. (c)–(e) AGM is capable of modeling any combination

of (c) nonoverlapping, (d) hierarchically nested, as well as (e) overlapping communities.

Fig. 5. An example on a Facebook friendship network of a particular user. (a) Facebook friendship network of a single user. (b) The same

network but with communities explicitly labeled by the user: high school friends, colleagues at the workplace, and university friends with whom

the user plays basketball and squash. Communities are denoted by filled regions. Note that nodes in the overlap of communities have higher

density of edges. (c)–(e) Results of applying (c) clique percolation, (d) link clustering, and (e) mixed-membership stochastic block model to the

Facebook network.
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high school, workplace, and two communities of

university friends. The visualization of the same network
using communities in Fig. 5(b) shows that the network

in Fig. 5(a) is in fact composed of the overlaps of the

four communities. In this example, the goal of commu-

nity detection is to identify the communities in Fig. 5(b)

based only on the connectivity structure of the network

in Fig. 5(a).

Due to an implicit assumption that nodes in commu-

nity overlaps are less densely connected than nodes in the
nonoverlapping parts of communities [Fig. 2(a)], many

overlapping community detection approaches [6]–[11] fail

to properly detect communities in this network. For

example, Fig. 5(c)–(e) illustrates the result of applying

clique percolation [10], link clustering [6], and the mixed-

membership stochastic block (MMSB) model [7] to the

Facebook network in Fig. 5(a). We also give a formal

argument that explains the behavior of these methods in
Appendix I-A and the extended version [35].

However, when we use the AGM to analyze the

Facebook network, the AGM automatically detects four

communities (Fig. 6), which is the same as the number

identified by the user. Moreover, the communities de-

tected by the AGM nearly perfectly correspond to com-

munities identified by the user. The AGM correctly

determines community overlaps and community member-
ships for 94% of the user’s friends.

B. Quantitative Evaluation
We also perform a large-scale quantitative evaluation

on AGM on biological, social, collaboration, and product
networks where functional communities are explicitly

labeled [18]. The networks represent a wide range of

sizes and edge densities, as well as amounts of

community overlap. We compare the AGM to a number

of widely used overlapping and nonoverlapping commu-

nity detection methods [6], [7], [10], [20] and quantify

the correspondence between the explicitly labeled

ground-truth communities and the communities detected
by a given method. The performance metrics quantify

the accuracy of the method in assigning nodes to their

ground-truth communities. (Refer to Appendix I-B for

further details.)

On a set of social, collaboration, and product

networks, AGM on average outperforms existing meth-

ods by 50% in four different metrics that quantify the

accuracy in assigning nodes to their ground-truth
communities [Fig. 11(a)]. In particular, AGM gives a

50% relative improvement over clique percolation [10].

Link clustering [6] detects overlapping as well as

hierarchical communities and AGM improves 61% over

it. Similar levels of improvement are achieved when

comparing AGM to other overlapping and nonoverlap-

ping methods [7], [20]. Furthermore, AGM gives a 14%

relative improvement over link clustering using the same
networks and the same data-driven benchmarks as used

in the link clustering work [6].

Furthermore, we also experiment with AGM on a set

of four different biological PPI networks. Remarkably,

even though AGM was developed based on insights

gained on primarily social networks, we find that AGM

performs surprisingly well on biological networks as

well. As performance metrics, we compute the average
statistical significance of detected communities (p-value)

for the three types of gene ontology (GO) [41]. We con-

sider negative logarithm of average p-values for each of the

three GO term types as three separate scores. On average,

the AGM outperforms link clustering by 150%, the clique

percolation method (CPM) by 163%, Infomap by 148%,

and the MMSB model for 12 times [Fig. 11(b)]. Fur-

ther experimental details are in the Appendixes III, IV,
and [35].

Overall, the AGM approach yields substantially more

accurate communities. The success of our approach

relies on the AGM’s flexible nature, which allows the

AGM to decompose a given network into a combina-

tion of overlapping, nonoverlapping, and hierarchical

communities.

V. COMMUNITIES, PLURALISTIC
HOMOPHILY, AND
CORE–PERIPHERY STRUCTURE

The AGM also makes it possible to gain well-founded in-

sights into the community structure of networks. In parti-

cular, we discover that overlapping communities lead to a

global core–periphery network structure. Core–periphery
structure captures the notion that many networks decom-

pose into a densely connected core and a sparsely con-

nected periphery [21], [22]. The core–periphery structure

is a pervasive and crucial characteristic of large networks

[23], [24], [42].

We discover that a network core forms as a result of

pluralistic homophily where the connectedness of nodes is

Fig. 6. AGM on the Facebook network from Fig. 5. AGM successfully

decomposes the network into different tiles (communities) and

correctly determines community overlaps as well as community

memberships for 94% of the nodes.
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proportional to the number of shared community member-

ships, and not just their similarity along a single dimension

or community. Thus, the network core forms as a result of
many overlapping communities. The average number of

community memberships of a node decreases with its dis-

tance from the center of the network (Fig. 7). Moreover,

the edge likelihood increases as a function of community

memberships (Fig. 3). Thus, the nodes in the center of the

network have higher density of edges than nodes in the

periphery. Therefore, we show that even in the presence of

many communities, pluralistic homophily leads to dense
community overlaps, which cause a global core–periphery

network structure.

A further examination of the amount of community

overlap reveals that social, web, and foodweb networks in

Table 1 have a single central dominant core [Fig. 8(a)]. On

the other hand, communities in protein and product

networks have small overlaps and also form many local

cores [Fig. 8(b)]. In particular, protein communities only
slightly overlap and form local cores as well as a small

global core [Fig. 8(d)]. Small overlaps of protein commu-

nities can be explained by the fact that communities act as

functional modules, and it would be hard for the cell to

independently control heavily overlapping modules [2],

[6]. Communities of copurchased products can also be

thought of as functional modules since the products in a

community are bought together for a specific purpose. On
the other hand, foodweb communities overlap pervasively

while forming a single dominant core. This leads to a

flowerlike overlapping community structure [Fig. 8(c)],

where tiles (communities) overlap to form a single core of

the network. The heavily overlapping foodweb communi-

ties form due to the closed nature of the studied Florida

Bay ecosystem [43]. Web communities overlap moderately

and form a single global core. Many of these communities

form around common interests or topics, which may over-

lap with each other [4].

VI. CONCLUSION

We note that our approach builds on the previous work on

community detection [6]–[16]. We examine an implicit

assumption of sparsely connected community overlaps and

find that regions of the network where communities over-

lap have higher density of edges than the nonoverlapping

regions.

We then rethink classical structural definitions of com-
munities and develop the AGM, which models structural

communities as overlapping tiles. Using our well-founded

approach, we find that all networks considered in this study

exhibit a core–periphery structure where nodes that belong

to multiple communities reside in the core of the network.

However, networks have different kinds of core–periphery

structure depending on the mechanism for community

formation in the networks. Dense community overlaps also
explain the mixed success of present community detection

methods when applied to large networks [24], [27].

Our work also enhances our understanding of homo-

phily as one of the most fundamental social forces. Homo-

phily in networks has been traditionally thought to operate

in small pockets/clusters. Thus, nodes that have neighbors

in other communities were considered less likely to share

properties of those neighbors. In contrast, our results are
implying pluralistic homophily where the similarity of

nodes’ properties is proportional to the number of shared

community memberships. In a network, the most central

nodes are those that have the most shared properties/

functions/communities with others. More generally, our

work provides a shift in perspective from conceptual-

izing communities as densely connected sets of nodes to

Fig. 7. Overlapping communities lead to global core–periphery network structure. The average (and the tenth percentiles) of the number of

community memberships hmiðdÞ as a function of its farness centrality d, defined as the average shortest path length of a given node to all

other nodes of the network [3]. (a) LiveJournal social network. (b) Saccharomyces cerevisiae PPI network. The number of community

memberships of a node decreases with its farness centrality. Nodes that reside in the center of the network (and have small shortest path

distances to other nodes of the network) belong to the highest number of communities. This means that core–periphery structure forms due

to community overlaps. Communities in the periphery tend to be nonoverlapping while communities in the core overlap pervasively.
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defining them as overlapping tiles and represents a new

way of studying complex systems. h

APPENDIX I
DETECTING DENSELY
OVERLAPPING COMMUNITIES
Here, we show that three popular community detection

methods, clique percolation (CPM) [10], [44], link

clustering (LC) [6], and stochastic block model [7], [45],

cannot properly detect communities with dense overlaps.

A. Clique Percolation
First, we analyze the CPM and show that it may not

properly detect two overlapping communities from

Fig. 2(c). The CPM has a single input parameter k which

determines the size of the maximal cliques that the algo-

rithm looks for. For example, Fig. 9 shows the result of

CPM on the network of Fig. 2(c) where the overlap be-

tween the two communities is denser than the individual

communities. When k ¼ 3, the CPM finds a community

that covers the whole network because the clique in the

overlap connects the cliques in the left community and the

right community, whereas the CPM finds a community of

the overlap when k ¼ 4.
In addition to CPM, there are many other overlapping

community detection methods that are based on expanding

the maximal cliques. These methods (for example, Greedy

Fig. 8. Primary and secondary cores in networks. (a) The fraction of nodes CðaÞ in the largest connected component of the induced subgraph on

the nodes who belong to at least a communities. By thinking of a network as a valley where peaks correspond to cores and peripheries to lowlands,

our methodology is analogous to flooding lowlands and measuring the fraction of the largest island. A high CðaÞmeans that there is a single

dominant core (peak), while a low CðaÞ suggests the existence of nontrivial secondary cores. (b) Probability density PðoÞ of the maximum overlap

o. Maximum overlap oA of a given community A is defined as the fraction of A’s nodes that are in the overlap with any other community.

Communities in the PPI, social, and product copurchasing networks are mostly nonoverlapping whereas the communities in the foodweb and

the web graph are pervasively overlapping. (c) Communities detected by the AGM in the foodweb form a single central core. (d) Communities

in the PPI network form many secondary cores.

Fig. 9. Clique percolation method cannot detect communities with

dense overlaps. Given a network with two communities and a dense

overlap, clique percolation method would report a community that

(depending on the parameter settings) either (a) includes both

communities, or (b) it would find a small community consisting

only of the overlap: (a) kCPM ¼ 3; (b) kCPM ¼ 4.
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clique expansion [46] and EAGLE [47]) also suffer from

the same problem.

B. Stochastic Block Models
We show that three variants of stochastic block models

are unable to correctly discover communities with dense

overlaps: the traditional stochastic block model [45], the

degree-corrected stochastic block model [48], and the

MMSB model [7]. Based on the input matrix from

Fig. 2(c), all three models identify three blocks, as illustrated

in Fig. 10. The reason for this is that the edge probability

between two nodes that belong to communities A and B is
weighted average of PðA; AÞ and PðB; BÞ, where PðX; YÞ is an

edge probability between a node in community X and a node

in community Y. This means that the edge probability

between the two nodes that share multiple communities is

smaller than the maximum of PðA; AÞ and PðB; BÞ (due to the

weighted summation). Therefore, the edge probability

between overlapping nodes cannot be higher than the edge

probability between nodes in an individual community. We
also note that in principle one could apply postprocessing of

communities detected by stochastic block models to identify

which of the detected structural communities actually

correspond to overlaps of functional communities. However,

it is not immediately clear how to develop such postproces-

sing method.

C. Link Clustering
Last, we show that link clustering [6] is not able to

correctly detect overlapping communities with dense over-
laps. Link clustering performs hierarchical clustering with

the edges of the given network based on the Jaccard simi-

larity between the adjacent nodes of the edges. Since edge

density in the area of community overlap is higher, this

means that the Jaccard similarity between the adjacent

nodes will be higher, which in turn means that link clus-

tering will identify the edges in the overlap as a separate

community. (Refer to the extended version [35] for a more
formal argument.)

APPENDIX II
METRICS OF COMMUNITY
DETECTION ACCURACY
We focus the evaluation of community detection methods

on their ability to correctly identify overlapping ground-

truth communities.

To quantify the performance, we measure the level of
agreement between the detected and ground-truth com-

munities. Given a network GðV; EÞ, we consider a set of

ground-truth communities C� and a set of detected com-

munities Ĉ, where each ground-truth community Ci 2 C�

and each detected community Ĉi 2 Ĉ is defined by a set of

its member nodes. To compare Ĉ and C�, we use four

performance metrics.

1) Average F1 score [49]: We compute FgðCiÞ ¼
maxj F1ðCi; ĈjÞ for each ground-truth community

Ci and FdðĈiÞ ¼ maxj F1ðCj; ĈiÞ for each detected

community Ĉi, where F1ðS1; S2Þ is the harmonic

mean of precision and recall between two node

sets S1; S2. The average F1 score is ð1=2Þð �Fg þ �FdÞ
where �Fg ¼ ð1=jC�jÞ

P
i FgðCiÞ and �Fd ¼ ð1=jĈjÞ�P

i FdðĈiÞ.
2) Omega index [50]: For each pair of nodes u; v 2 V,

we define Cuv to be the set of ground-truth com-

munities to which both u and v belong and Ĉuv to

be the set of detected communities to which both

nodes belong. Then, the omega index is

ð1=jVj2Þ
P

u;v2V 1fjCuvj ¼ jĈuvjg.
3) Normalized mutual information [12]: We com-

pute 1�ð1=2ÞðHðC�jĈÞþHðĈjC�ÞÞ, where HðAjBÞ
is the extension of entropy when A; B are sets of
sets [12].

4) Accuracy in the number of communities:

1� ðjjC�j � jĈjjÞ=jC�j, which is the relative error

in predicting the number of communities.

APPENDIX III
APPLYING AGM TO SOCIAL, PRODUCT,
AND COLLABORATION NETWORKS
Fig. 11(a) displays the composite performance of each of

the five methods over the six networks with ground-truth

communities. Overall, we note that AGM gives best overall

performance on all networks, except the Amazon, where it

ties with MMSB. Furthermore, AGM detects highest
quality communities for most individual performance me-

trics in all networks. On average, the composite perfor-

mance of AGM is 3.40, which is 61% higher than that of

link clustering (2.10), 50% higher than that of CPM (2.41),

30% higher than that of Infomap, and 8% higher than that

of MMSB (3.25). The absolute average value of omega

index of AGM over the six networks is 0.46, which is 21%

Fig. 10. The result of the stochastic block model and the

mixed-membership stochastic block model on a network of two

communities with dense overlap. The adjacency matrix of the network

in Fig. 2(c) is shown, and the bold lines denote the three partitions

discovered by the stochastic block models, where the overlap is

confused as a separate community.
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higher than link clustering (0.38), 22% higher than CPM

(0.37), 5% higher than Infomap (0.44), and 26% higher

than MMSB (0.36).

In terms of absolute values of scores, AGM archives the

average F1 score of 0.57, average omega index of 0.46,

mutual information of 0.15, and accuracy of the number of

communities 0.42. We also note that AGM also outper-

forms CPM with other values of k ðk ¼ 3; 4; 6Þ.

APPENDIX IV

APPLYING AGM TO
BIOLOGICAL NETWORKS
We also evaluate the performance of AGM on the four

types of PPI networks of Saccharomyces cerevisiae [6]. As

performance metrics, we compute the average statistical
significance of detected communities (p-value) for the

three types of GO terms (biological process, cellular com-

ponent, and molecular function) [41].We consider nega-

tive logarithm of average p-values for each of the three GO

term types as three separate scores.

Fig. 11(b) displays the composite performance in the

four PPI networks. We observe that the AGM attains the

best composite performance in all four networks. On ave-

rage, the composite performance of AGM is 3.00, which is

150% higher than that of link clustering (1.20), 163%

higher than that of CPM (1.14), 148% higher than that of
Infomap (1.21), and 12 times higher than that of MMSB

(0.08). We further investigated the poor performance of

MMSB on these networks and found it is due to the fact

that MMSB tends to find very large communities con-

sisting of more than 80% of the nodes.
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INV ITED
P A P E R

Social Persuasion in Online and
Physical Networks
This paper proposes that social persuasion will seamlessly span and use

computationally and empirically rigorous methods to understand both the cyber and

physical worlds.

By Vivek K. Singh, Ankur Mani, and Alex Pentland

ABSTRACT | Social persuasion to influence the actions, beliefs,

and behaviors of individuals, embedded in a social network,

has been widely studied. It has been applied to marketing,

healthcare, sustainability, political campaigns, and public

policy. Traditionally, there has been a separation between

physical (offline) and cyber (online) worlds. While persuasion

methods in the physical world focused on strong interpersonal

trust and design principles, persuasion methods in the online

world were rich on data-driven analysis and algorithms. Recent

trends including Internet of Things, ‘‘big data,’’ and smart-

phone adoption point to the blurring divide between the cyber

world and the physical world in the following ways. Fine

grained data about each individual’s location, situation, social

ties, and actions are collected and merged from different

sources. The messages for persuasion can be transmitted

through both worlds at suitable times and places. The impact of

persuasion on each individual is measurable. Hence, we posit

that the social persuasion will soon be able to span seamlessly

across these worlds and will be able to employ computationally

and empirically rigorous methods to understand and intervene

in both cyber and physical worlds. Several early examples

indicate that this will impact the fundamental facets of

persuasion including who, how, where, and when, and pave

way for multiple opportunities as well as research challenges.

KEYWORDS | Cyber–physical social networks; networked inter-

vention; persuasive computing; social persuasion

I . INTRODUCTION

Imagine Alice, a 20-year-old senior in college, trying to
quit smoking. She has not smoked in a month. On a

Saturday afternoon, she goes alone to the terrace of her

dorm with a cigarette and a lighter. Just as she is about to

light her cigarette, her friend, Jane, from the adjacent

room comes and says, ‘‘Stop! I will come with you to watch

The Hobbit if you do not light that cigarette.’’ Alice does not

light the cigarette, and the two friends enjoy a wonderful

movie together.
This was not a coincidence. Multiple events took place

in the background that allowed Jane to persuade Alice to

stop smoking. Alice had signed up for a program to quit

smoking. The program collects information about Alice

and her friends. Several pieces of information such as

location, intent, friendship patterns, and recent actions

were monitored. The program recognized that Alice was

lonely, because her boyfriend was out of town, and she
could not find someone to go watch The Hobbit with her.

She had reported on her online social network that she is

looking for company to go watch the movie. Alice did not

get along with her roommate, so when her roommate came

to the room, she found an excuse to go to the terrace and

smoke. The risk for Alice slipping was very high, so the

program recognized that it was the right moment to

persuade her to not smoke. Given Alice’s location and the
availability of her friend, Jane, next door, Jane was the

perfect candidate to persuade her. Alice’s risk of smoking

at the terrace and her intent to watch the movie was

communicated to Jane by a mobile app message and that

suggested Jane the ideal way to persuade Alice.

Stories of social persuasion like this are going to be very

common in future. The persuasion here was optimized for

the aspects of who, how, when, and where. With the
emergence of fine-grained data about users and their social

context in the physical (offline) and cyber (online) worlds,

always-on sensing, and widespread accessibility of
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enabling technologies, we are stepping into an era of

ex-post optimization of social persuasion. As shown in

Fig. 1, not too long ago, the mechanisms of persuasion for

quitting smoking involved banners on highway that said,
‘‘Smoking kills.’’ The message and the location were

ex-ante optimized to persuade the largest population of

smokers to not smoke. Today, due to the availability of rich

personal, social, and contextual data, similar persuasion

attempts can leverage social ties, employ nonmonetary

incentives, and be responsive to user situations.

This is possible in large part due to the technological

trends including the Internet of Things, mobile phone
usage, and mediated human interaction. These trends are

paving way for an era where computational systems will

break the conventional silos of the physical and cyber web.

People’s real world movements, habits, and social connec-

tions will be accessible via the ubiquitous web, and

multiple layers of ‘‘cyber’’ data including information

hidden in webpages, databases, and online social networks

will be available to apps running on each user’s mobile
phone. Such apps will be able to integrate heterogeneous

data to understand both the spatio–temporal and social

contexts, and be able to respond to human needs at the

right time, right place, and in the right social context.

These trends will impact the persuasion frameworks

being employed. Traditionally, the persuasion framework

involving user actions, generated data, and interventions

(see Fig. 2) have been siloed, i.e., focused within one
realm. For example, in the cyber realm, a user’s online

search history was used to recommend products and the

click through (if undertaken) was tracked. Soon, the

computational mechanisms will be able to select the right

approach for persuasion which could also be based on

combination of the cyber and physical webs. For example,

a user’s online patterns indicating emotional needs could

be intervened by real-world actions by friends and family.

Taken together, these methods will allow humans to
persuade each other and impact multiple facets of human

lives including health, traffic, water, disaster mitigation,

epidemic control, financial mechanisms, security, and

politics.

In this position paper, we illustrate the emerging

technological changes and discuss how they will impact

social persuasion in the emerging cyber–physical social

networks. We expect the technology to impact the per-
suasion landscape in multiple important ways: 1) merging

of the silos of data; 2) persuasion mechanisms that work in

an always-on and just-in-time manner; 3) scale and

resolution of the data available to persuasion systems;

and 4) the emergence of closed-loop persuasion systems.

While such technologies and corresponding methods will

impact societies in multiple ways, we scope the discussion

here on persuading users individually (rather than en mass)
via intervention mechanisms that optimize for the essen-

tial aspects of who (social), when, where (situational), and

how (channel).

The focus of this paper is different from automated

intervention mechanisms (alerts, automated reminders)

that do not have any other human in the loop. This is

because, first, human actors are known to be much more

persuasive than anthromorphized agents. Even more
importantly, humans can act as a ‘‘sounding board’’ for

the advice generated by automated means. Multiple

aspects of intervention (ethical, social, and also verifica-

tional) are best judged by a fellow human than an entirely

automated process. For example, in the smoking scenario,

Jane could act as a social filter who could first do a ‘‘sanity

check’’ to ensure that Alice might indeed be at risk, and

second, consider that watching a movie together is an
appropriate and ethically sound method for intervention.

Hence, while automated systems will increasingly provide

better recommendations, a human in the loop would still

be crucial to their impact in real-world social settings.

Similarly, a human-in-the-loop intervention is different

from changes made by system designers, who are aware of

the global network structure, and can manipulate the

network structure or the information content without the
users realizing it. Such scenarios raise ethical questions, as

was seen in the recent response to [18]. This paper instead

focuses on scenarios in which there is an explicit action by

a human in the loop to persuade his or her peers.

II . CURRENT APPROACHES

There are multiple tools and approaches that are already
being applied at large scales in both cyber and physical

social networks.

In physical social networks, the importance of social

proof and trust has been well documented. For example,

Golembiewski and McConkie [12] have argued the case for

the importance of trust in mediating social processes.

Similarly, Brown and Reingen [5] have reported quantitative

Fig. 1. Comparison between (a) traditional and (b) emerging

persuasion strategies. Emerging strategies will frequently leverage

a user’s social ties and positive nonmonetary incentives, and be

situation aware.
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results highlighting the value of word of mouth for marketing

campaigns. In the last decade, multiple government and

nongovernment agencies have been providing comparison

metrics to other users to convince users to regulate their

consumption of electricity, water, food, and other sustain-

ability-driven choices. For example, in a study involving

more that 80 000 households, Alcott [3] found that social

comparison was an effective method for reducing the energy
consumption of households.

In cyber social networks (e.g., Twitter and Facebook),

users’ comments and views on products, brands, and

issues are already being viewed as electronic words of

mouth [15]. These word-of-mouth impressions can per-

suade others to adopt or reject certain products or ser-

vices [13]. Multiple advertising campaigns highlight the

users in one’s online social network (e.g., Facebook and

Google+) who have also bought the same product,

consumed the same media content, or taken similar ideo-

logical positions. Taken together, the data relating to

every ‘‘like,’’ ‘‘poke,’’ tweets, search history, articles read,

media consumed, and messages shared are being analyzed

by online firms using data-driven techniques (network

analysis, user profiling, influence analysis, contagion and

homophily effects, associative rule mining) to recommend
products and services to users based on the behavior of

other users. For example, the collaborative filtering [21]

approach, which recommends products to users based on

the ratings provided by ‘‘similar’’ users has been widely

adopted by online firms to recommend products and ser-

vices to users.

Traditionally, while the offline networks have involved

a much stronger sense of trust, human intelligence, and

Fig. 2. Conventionally, the persuasion scenarios involving user actions, generated data, and persuasion design have focused only on one realm:

(a) cyber, or (b) physical. Emerging persuasion scenarios (c) will be able to combine and move seamlessly across the cyber and physical worlds for

understanding the actions, capturing the data, and intervening.
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real-world context, the online settings have had a richer
access to data, algorithms, and analytics. The emergence of

‘‘big data,’’ Internet of Things, and similar advancements is

changing this scenario. Computing technologies are now

able to understand detailed human behavior in physical-

world settings. With the right permissions, it is now

possible to capture every gaze, interest, and heartbeat of

any given user. With mobile phones becoming the key

enablers, it is possible to use computational mechanisms
and data-driven approaches originally defined for ‘‘cyber’’

networks to now work with physical behavioral data.

III . TECHNOLOGY CHANGES

The Internet of Things has been a huge driver for the

merging of the cyber and physical webs. According to

Acatec, the German Academy of Technical Sciences, over
98% of microprocessors today are embedded in everyday

objects and devices [1]. Similarly, it is estimated that today

there are more than 12 billion Internet-enabled devices

[8], and more active phone connections than the pop-

ulation of the world. According to Walker Sands (Chicago,

IL, USA), over 28% of the Internet traffic requests come

from mobile devices [26]. A unique property of these mo-

bile phones is that any data coming from them are inher-
ently spatio–temporal [exact Global Positioning System

(GPS) or coarse cell tower and timestamps]. All of these

are part of a growing trend. The International Data Corpo-

ration (IDC) reported that the number of smartphones

sold was already more than the number of ‘‘nonsmart’’

phones in 2013 [14]. This means that devices, which can

capture human movements (GPS), face-to-face interac-

tions (via Bluetooth, infra-red, GPS), and call/SMS social
networks as they occur in the physical world are soon

going to be ubiquitous.

These trends impact the technology in multiple

important ways.

1) Merging silos of data: While the traditional

methods for data-driven persuasion focused on

only one type of data (either cyber or physical) in a

single format, multiple emerging technologies are
enabling combination of these data for a more

holistic understanding of the user situation. These

technologies include the semantic web, informa-

tion fusion, federated databases, and mashups,

and are being applied for applications ranging

from healthcare, to travel, and politics. For

example, Pongpaichet et al. [25] describe a

method for integration of user’s personal context
with distributed spatio–temporal data to create

the right interventions for allergy patients.

2) Always on, just in time: While traditional persua-

sion strategies were employed in limited spatial

and temporal bounds, today’s computational

systems are always on. Apps running on the

mobile phone are with the person 24/7, wherever

he/she goes. This allows the intervention mechan-
isms to respond just in time to undertake

preventive measures and allow for ex-post opti-

mized persuasion.

3) Scale and resolution: The emerging trends on ‘‘big

data’’ imply that computational systems have ac-

cess to information at scales and resolution levels

that were never captured before. For example,

today every gaze, glance, heartbeat, emotion,
movement, financial activity, and social activity

of a person can be digitally captured and shared

with the community if the person chooses so. This

implies that systems can be personalized in ways

not possible before. Similarly, satellite imagery,

Internet-of-Things-based devices, sensor net-

works, and projects such as the Planetary Pulse

are channeling data coming from more parts of
planet Earth in more detail than ever before to

users and their mobile applications. This, in ef-

fect, allows user applications to have access to the

pulse of the planet and the actions of the society

[11] while taking every action.

4) Closed-loop systems: Siloed persuasion strategies

were often open loop. For example, it was very

hard for online smoking cessation campaigns to
follow through and observe the physical actions of

the users. Even within the physical realm it was

impractical for persuaders (e.g., smoking aware-

ness volunteers) to observe the actions of their

subjects. The newer technologies are allowing for

the impact of persuasion strategies to be observed

in a closed loop. Over time these systems will

identify which strategies work best in different
scenarios.

These technology changes are also allowing scientists

to study social persuasion at newer scales and granularity,

and cause in situ interventions by combining multiple la-

yers of data. Multiple early initiatives have already started

building tools, algorithms, and techniques that employ

smart devices to understand and influence cyber–physical

social networks.
For example, the ‘‘Friends and Family’’ study con-

ducted at the Media Lab, Massachusetts Institute of

Technology (MIT, Cambridge, MA, USA), studied a

community of 100+ users living in a residential dorm for

a period of over a year [2]. They obtained face-to-face

interaction data, Facebook interaction data, as well as self-

reported social ties via surveys. In multiple studies, they

have shown how face-to-face and other types of networks
can be combined to predict flu spread, spending patterns,

mobile app adoption, and to encourage users to undertake

certain actions such as jogging [2], [22], [28]. A related

effort is combining layers of data ranging from Twitter

streams and air quality levels to personal GPS coordinates

and accelerometer readings to cause just-in-time inter-

ventions [25].
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Similar effort is being conducted by the University of
Trento (Trento, Italy) under the umbrella of ‘‘Mobile

Territorial Lab’’ where multiple studies are being con-

ducted to understand user behavior in ‘‘work’’ as well as

‘‘personal’’ social environments. For example, the ‘‘Socio-

Metric Badges’’ study analyzed social interaction data for

six weeks in a research institution monitoring the

interaction activity of 53 people [20]. The generated

corpus allows researchers and practitioners with a digital
trace data of people’s physical as well as online (e-mail)

social interaction behavior. With supporting information

about participants’ individual characteristics (e.g., person-

ality traits) and the interaction context (e.g., participants’

current situation), this study is being expanded onto a

broader program where a community of 100+ users is

being studied in terms of their spending habits and affect

levels.
The Copenhagen Networks Study at the Technical

University of Denmark (Lyngby, Denmark) [30] has been

using smartphones and the associated sensors (GPS, WiFi

access points, calls) as well as Facebook messages to

understand a community of freshmen at the university.

The NetSense project at the University of Notre Dame

(Notre Dame, IN, USA) also analyzes the social interaction

patterns in a community of 200 freshmen as measured
through text, voice call, e-mail, Facebook posts, and the

proximity between the devices. Such initiatives point to a

growing interest in studying physical social networks at

scale: 100+ users and multiple months, and complement it

with online networks and contextual data. The ‘‘Phone lab’’

initiative (http://www.phone-lab.org/) at the State Uni-

versity of New York at Buffalo (SUNY Buffalo, Buffalo,

NY, USA) provides a public Android testbed designed to
simplify large-scale social experiments that can be

undertaken via smartphones. Initiatives like these may

soon make experimentation and analyses in physical social

networks accessible to a much larger pool of researchers

and practitioners.

IV. IMPACT ON PERSUASION

These technology changes are blurring the boundaries

between online and offline (or cyber and physical) social

networks. We expect many of the computationally rigorous

methods that were originally designed for the cyber data to

evolve to consider the rich contextual data provided by the

physical sensors. Specifically looking back at the four key

aspects identified in Section I, we expect the systems to be

able to understand the who, how, when, and where aspects
in much greater detail than possible before.

A. Who
Multiple studies have suggested that identifying the

right node for conveying a message is extremely important

for successful persuasion [6], [32]. People respond to

persuasion by close friends and family as opposed to

strangers, and persuasion by people with authority [6],
[24]. Our earlier work has also shown that close friends

could be very persuasive [2], [22]. Segmentation-based

approaches are used to spread messages to a group of

similar people, for example, those who share a common

passion for rock music or certain sports, or political

ideologies. Induction tries to activate newer connections

between users where certain thought leaders, celebrities,

or early adopters are encouraged to communicate the
message and persuade people. This effect is seen also in

social media: celebrities are often paid to tweet about

products and multiple firms try to make their campaigns go

‘‘viral.’’ Last, alteration of networks to change the

underlying interconnections is an emerging but extremely

powerful mechanism for behavior change. For example,

Aharony et al. [2] experimented with a social mechanism,

described in [23], where the peers of the target users were
rewarded rather than the target users themselves. This

strategy was found to be more effective at persuading users

to exercise than the traditional approach of paying the

users themselves. Our previous work has also shown that

emerging technologies (smartphones with physical prox-

imity sensors) and computational approaches can also be

used to automatically recognize close and trusted ties. In

fact, these trusted ties were found to be even more effective
at causing behavior change than the close ties [27].

Peer influence for persuasion is more pronounced for

products and services with network externalities like

phone communication plans and adoption of online social

networks such as Facebook. However, the earlier choice of

choosing peers and celebrities was ex-ante optimized for an

assumed distribution about the population without

detailed information about peer relationships and individ-
ual likings for celebrities.

We have also presented the theoretical underpinnings

of this phenomenon. Our results on the joint model of

externalities and peer pressure show that even after

considering the (positive and negative) changes in the

relationship between the two agents in a persuasion

scenario, using right peers to persuade can help control

global externalities much more efficiently than direct
persuasion through subsidies [23]. For example, in the

described smoking scenario, there is a cost associated with

Jane’s persuasion, and it may impact the relationship

between the two both positively or negatively. Our model

in [23] indicates that using right peers to persuade is more

efficient than direct persuasion through subsidies.

Going forward, the systems with an ability to merge

data across silos at high scale and resolution in real time
will be able to identify the right person to initiate the

intervention. Further, the information about these inter-

ventions and the success/failure of them in terms of actual

user actions could be tracked to refine the social ties as

well as strategy scores. Over time, these may allow systems

to adapt and also point out relevant trends on the success

and failure of various persuasion strategies.
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B. How
An important change that technology brings is that

there is increased and accurate information about intent

and preferences of the individuals needed to be persuaded.

In the example, Alice was actually lonely and was going to

smoke. The standard pricing mechanisms that would pay

Alice a little money to not smoke would not have had a big

impact. However, a company to watch her favorite movie

was a big incentive for her, worth a lot more than a little
amount of money. Persuasion theories have utilized

several ways to persuade, such as using force, appealing

to reason, appealing to emotion, coercion, and deception

[6]. The use of force is considered the failure of persuasion

[33]. Public policies such as taxation and subsidies are

often designed to appeal to reason, while advertising is

often appealing to emotion, coercion, and sometimes

deception.
Our earlier work has argued a case for the leveraging

the difference between ‘‘incurred cost’’ and ‘‘perceived

value,’’ especially in nonmonetary transactions [29]. For

example, better game armor, ‘‘mayor’’ status, and higher

download bandwidth typically cost much less to the

enabling platform than their perceived value by the user.

Similarly, social incentives can be a lot more effective than

purely monetary incentives. In our previous work [23],
we found that peer persuasion via payments to friends

was 3.5 times more effective at causing behavior change

than direct payment to users. In fact, we have also found

that passive social persuasion can already be effective in

multiple application settings. For example, a previous

study in the group on Meeting MediatorVa mobile

system that detects social interactions and provides real-

time feedback to enhance group collaboration and
performanceVshowed that visualizing the social interac-

tion pattern data in real time on the mobile phone of each

user could induce changes in group collaboration patterns

[17]. In particular, the results show greater productivity

and trust within geographically separated groups that are

using the Meeting Mediator. A different study conducted

by Balaam et al. [4] used a multiuser public display to

enhance the interactional synchrony by visualizing subtle
feedback about users’ behavior. Their results suggest that

social dynamics can be used by machines to support group

behavior without requiring a direct and exclusive

interaction with the users.

Since one technique often does not fit all people, the

emerging trends of fine-grained information about indi-

vidual preferences can help not just identify the optimal

method but also what will appeal to the individual the most
and how to persuade can be ex-post optimized as well. The

merging of online and offline worlds also creates

possibilities to provide incentives to people in the physical

world for actions in online worlds. Often people are given

discount coupons to restaurants for taking an online

survey. Several such possibilities are being increasingly

made possible by the virtual currencies such as bitcoin.

C. When and Where
An understanding of the user situation allows the

system to intervene at the most opportune time and place.

For example, the intervention by Jane in the example in

Section I at the ‘‘right’’ time and place was critical to its

success. The relationship between time and place gives a

good estimate of point of action, and persuasion is very

effective at the point of taking action. The timing of the

intervention has been identified to be a critical determi-
nant of success in Fogg’s behavioral persuasion model [9],

and similar results have been reported in practical

intervention studies in interpersonal settings [34]. The

timing and the location are important aspects for the

success of geofencing-based approaches for marketing and

advertisements. Users are more likely to be interested in

discount coupons or physically be able to attend shows and

concerts when they are in the vicinity to these establish-
ments. Pushing upgrades, up-sells, and checkout-counter

purchases have been well documented in terms of their

effect on purchase behavior. These approaches also

connect very well with the ‘‘bait-and-switch’’ or the

‘‘commitment-and-consistency’’ principle proposed by

Cialdini [6].

Some of our recent work has focused on providing

users the right situational interventions just when and
where they need them. For example, Pongpaichet et al.
[25] define a generic approach for users to receive allergy/

asthma related alerts just as the combination of their

personal and spatio–temporal parameters matches certain

criteria. The approach of intervening at the right time and

place has also been adopted by multiple other efforts. For

example, multiple studies have shown that the placement

and display of water meters right when one is taking the
shower can be a lot more effective than posteffect

awareness [16], [31].

The emerging always-on technologies that are able to

cause the right ‘‘situational intervention’’ at the right time

will allow future systems to monitor and maybe even

predict the right time to initiate an intervention. In fact,

Google ‘‘Now’’ is providing anticipatory methods to send

alerts to users about things that maybe of interest to them in
the near future. For example, if a person has already booked

and paid for a hunting trip, it will be difficult to convince

her to not go for the trip as she is leaving her home.

However, if the peer of a person was available to persuade

the person (online or in person) at the time of purchase of

the trip, then the persuasion will be more effective. The

technological changes will also help identify such persua-

sion opportunities and make such persuasions possible.

V. RESEARCH OPPORTUNITIES

The intersection of the online and offline social networks

creates multiple novel opportunities to devise tools,

techniques, and algorithms that connect varied informa-

tion and persuasion channels across these networks. While
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many of the existing research directions will need to be
reexamined and refined to support for this intersection,

certain newer challenges will become exceedingly relevant.

1) Privacy and ethics: While privacy and ethics of

persuasion were already important concerns in the

online networks, the emergence of technology that

captures rich personal behavioral (every heartbeat,

gaze, interest, mobility pattern) and social inter-

action (face-to-face interaction, calls, sms, coloca-
tion) data and uses them for in situ persuasion

opens doors to a very different level of ethical and

privacy concerns. While users are presumably able

to adopt newer cyber identities, physical identities

and health parameters once compromised cannot

be restored. Hence, the recording and analysis of

physical data at the same level of discourse as

online data poses multiple privacy risks and hence
research challenges. One possible approach to

tackle this might lie in creating trusted ‘‘personal

data stores’’ [7] that allow for question-and-answer

approaches that support such persuasion frame-

works without giving away raw data to third

parties. Further, a technological ability to persuade

does not imply that persuasion should actually be

carried out. For example, while many people might
support sharing of such information for well-

accepted societal goals (e.g., to eradicate behav-

ioral diseases like diabetes, or trigger early

interventions to avoid traffic accidents), a much

more nuanced discussion is required on the right

policies for recommending newer products and

commercial services. Clearly, newer research ef-

forts are needed to define the right norms and
policies that govern the use of persuasion in cyber–

physical social settings. In fact, we anticipate that

the same kind of computational mechanisms that

have been employed for better ‘‘product’’ recom-

mendations will be adapted to provide ‘‘privacy’’

recommendations to a large number of users.

2) Orchestration and tradeoffs between cyber and
physical persuasion: So far, the persuasion ap-

proaches have stayed within their respective

realms (online or physical). Soon the merging of

the realms will open up interesting tradeoff and

coordination challenges. For example, how many

online signatures on an issue at Change.org are as

effective as ten people physically protesting about

the same issue? Similarly, if both online and
physical methods are available for persuasion,

which method should be used for which tasks? For

example, certain sensitive or health-related cam-

paigns might work best in semianonymized

settings, while others will benefit from the trusted

ties between users. Further, if certain campaigns

require a combination of online and physical

intervention, what should be their count and
order? While early studies such as [10] have

started exploring these issues, many more such

efforts are needed.

3) Living labs for social science: The emergence of

platforms for cyber–physical mining of social be-

havior and interventions opens the doors to an

exciting opportunity to test, validate, and refine

multiple social science theories. Multiple social
science theories have been based on experiments

conducted in limited laboratory settings and self-

reported surveys. These approaches were costly,

piecemeal, retrospective, and often suffered from

perception bias. Hence, an ability to conduct

longitudinal studies on social behavior as human

beings live their natural lives is emerging as a vital

tool for computational social scientists [19]. Fur-
ther, the opportunity to cause interventions and

make changes in these longitudinal studies may

allow social scientists to differentiate between

correlations and causations and develop norma-

tive social science that can potentially improve the

quality of human life. h
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INV ITED
P A P E R

Words on the Web: Noninvasive
Detection of Emotional
Contagion in Online
Social Networks
This paper reviews and discusses a nonexperimental, noninvasive method to detect

and quantify contagion of semantic expression in massive online social networks.

By Lorenzo Coviello, Student Member IEEE, James H. Fowler, and

Massimo Franceschetti, Senior Member IEEE

ABSTRACT | Does semantic expression spread online from

person to person? And if so, what kinds of expression are most

likely to spread? To address these questions, we developed a

nonexperimental, noninvasive method to detect and quantify

contagion of semantic expression in massive online social

networks, which we review and discuss here. Using only

observational data, the method avoids performing emotional

experiments on users of online social networks, a research

practice that recently became an object of criticism and concern.

Our model combines geographic aggregation and instrumental

variables regression to measure the effect of an exogenous

variable on an individual’s expression and the influence of this

change on the expression of others to whom that individual is

socially connected. In a previous work, we applied our method to

the emotional content of posts generated by a large sample of

users over a period of three years. Those results suggest that

each post expressing a positive or negative emotion can cause

friends to generate one to two additional posts expressing the

same emotion, and it also inhibits their use of the opposite

emotion. Here, we generalize our method so it can be applied to

contexts different than emotional expression and to different

forms of content generated by the users of online platforms. The

method allows us to determine the usage of words in the same

semantic category spread, and to estimate a signed relationship

between different semantic categories, showing that an increase

in the usage of one category alters the usage of another category

in one’s social contacts. Finally, it also allows us to estimate the

total cumulative effect that a person has on all of her social

contacts.

KEYWORDS | Influence; instrumental variables; nonexperimen-

tal methods; semantic expression; social networks

I . INTRODUCTION

In the last decade, the challenge of understanding the

spreading and synchrony of human behavior over social

networks has attracted the attention of the research

community at large. The problem originally arises in the

context of the social sciences, but due to the expanding
usage of online social networks, it has also attracted the

interest of the engineering community with the aim of

quantifying these effects using the massive amount of data

that these networks generate. Studies have included the

diffusion of news and ‘‘memes’’ [1]; cascades in commu-

nication platforms, networked games, microblogging

services [2]; health-related phenomena such as obesity

and smoking [3], [4]; emotional states like happiness and
depression [5], [6]; purchase of online products [7], [8];

clicking online advertisements; and joining online recre-

ational leagues and store purchases [9].
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Studies based on observational data pose an inherent
difficulty for causal inference because social contacts may

have similar behavior as a result of at least two processes:

homophily (the tendency of similar individuals to group

together) or influence [10], [11]. Controlled experiments

allow us to disentangle influence effects from homophily

both in the laboratory [12] and online [13]–[16], but they are

often limited in scale and lack external validity. Large scale

experiments have been shown to be feasible in the context of
political participation [16], product adoption [7], [8] and

emotional influence [17], but are often impractical or

require very close collaboration with private companies.

Moreover, the experimental change in the users’

experience required by some of these studies recently

came under scrutiny because of questions about the

ethics involved. Some people criticized [18] a large scale

study [17] of emotional contagion on Facebook in which
the researchers changed the content shown to some

users in order to study their reaction. Similar criticisms

were directed at the online dating website OkCupid for

experimenting with their platform in order to under-

stand how individuals react to each other [19]. These

recent events call for the development of alternative,

nonexperimental methods to study human behavior at

large scale [20].
Our work in [21] was an attempt to compensate for the

shortcomings of existing experimental and observational

approaches, using a method to detect and quantify

influence via instrumental variable regression. We studied

text-based expression in massive social networks, devel-

oped a model of emotional contagion of semantic

expression, and validated it on the content posted by a

large sample of Facebook users over a period of three years.
In this paper, we show how our model can also be

applied to different and possibly heterogeneous data from

other social networking platforms, and to contexts other

than emotional expression. Our approach is fully nonex-

perimental: it is based only on observational data and, as a

result, it does not alter users’ experience. It also guarantees

respect for user privacy: for our study in [21], individuals’

information and posts were never visible to researchers
and resided on secure servers where Facebook stores user

data, and were analyzed only at an aggregate level. The

study was reviewed for ethics and approved in advance by

the Institutional Review Board at the University of

California San Diego, San Diego, CA, USA.

Focusing on the mathematical model and on the

engineering methodology employed, this paper reviews

and complements our previous work. Our individual-level
model assumes that a person’s usage of words in a

semantic category is a linear function of temporal and

individual baseline effects; exogenous variables like news,

the stock market, or the weather; and endogenous

variablesVcorresponding to the usage of given semantic

categories in posts written by the person’s social contacts,

referred to as ‘‘friends.’’ The reciprocal causality between

the endogenous variables of the model makes it difficult to
obtain consistent and unbiased estimates of social

influence. Therefore, we proceed in two steps. First, we

aggregate the model on a geographical basis by averaging

over all people who are in the same city, obtaining a

model based on the same coefficients as the individual-

level model but with a much smaller number of

observations. Second, we deal with the problem of

reciprocal causality by estimating the model using
instrumental variable regression, a method pioneered in

economics [28]. This method relies on the availability of

an exogenous variableVcalled an instrumentVthat

affects the endogenous variables (friends’ posts) but

does not directly induce a change in the subject’s posts,

called the dependent variable. In general, valid instru-

ments might be unavailable, or they might lack sufficient

power to predict changes in the endogenous variable. In
our work, we considered rainfall experienced by friends

as the instrument, using data made available by the

National Climatic Data Center (NCDC),1 which proved

to be a robust predictor of emotional expression. Upon

finding a relationship between friend’s rainfall and their

expression, we can assume the former affects the latter

as the opposite direction is unlikely. Our method first

computes the effect that friends’ rainfall (the instru-
ment) has on friends’ posts (the endogenous variables).

Then, it evaluates the corresponding effect of the

rainfall-induced change in friends’ expression on the

person’s posts (the dependent variable).

In order to obtain consistent estimates, the instrument

must satisfy the exclusion restriction [28]. This posits that,

controlling for all other variables, the instrument (friends’

rainfall) must not directly affect the dependent variable.
An implication of this restriction is that the instrument

must also be uncorrelated with the exogenous variable

experienced by the subject (subject’s rainfall), otherwise

the model might only be estimating how a subject’s rainfall

affects her own expression. Therefore, to break any

correlation between a subject’s rainfall and friends’

rainfall, we restricted our analysis to observations for

which it did not rain in the subject’s city. Once this is
applied, the subject’s rainfall is constant in the data set

and, therefore, it does not correlate with friends’ rainfall.

Moreover, breaking the correlation between user’s and

friends’ rainfall solves the potential issue of the geographic

similarity of the weather in close-by cities. As a result, we

must also focus exclusively on social ties between

individuals in different cities (see Section III-D). Note

that individuals in different cities likely do not interact
face to face, but they can reach each other via multiple

communication media, such as the telephone, e-mail, and

social networking websites. Therefore, any influence

detected between them is unlikely to be caused by physical

1http://www.ncdc.noaa.gov
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interaction and would suggest that remote communication
plays an important role in spreading semantic expression.

Our method allows us to determine what semantic

categories are susceptible to influence between social contacts

by estimating how an individual’s usage of a semantic

category is affected by her friends’ usage of the same category.

We can then use the estimates for each semantic category to

rank them from the most to the least likely to spread.

Moreover, our method allows us to determine the
relationship between different semantic categories, by

estimating how an individual’s usage of one category is

altered by her friends’ usage of a different category. This

will help us to understand whether the usage of a semantic

category fosters or inhibits the usage of other categories.

We already showed in [21] that expression of positive

affect inhibits expression of negative affect and vice versa.

Finally, our model allows us to compute the cumulative
effect a person has on her friends (see Section III-F).

Although the effect on any one social contact will be small,

each person typically has many social contacts, so the total

expected effect of a single act of expression may alter the

expression of several other people. Here, we show how to

use our model to quantify this multiplier effect on posts

within the same semantic category and on posts in

different categories.

A. Related Work
Our work is related to a growing body of literature on

influence and diffusion in networks, whose goal is to

characterize how behaviors and information spread from

person to person. Online social networks are becoming

increasingly popular as research environments and sources

of data for these investigations. For example, the content
posted by people online has been used to identify which

people or topics are influential in social networking

websites [29] and in the blogosphere [30]. It has also been

used to study which network attributes and sharing

behaviors make people influential [31], which topics (e.g.,

represented by hasthtags) diffuse in a more persistent way

[32], and even to study the structure of diffusion cascades on

different communication platforms [2]. Large scale experi-
mental studies have isolated the role of the network in the

diffusion of information [33], emotional expression [17], and

behaviors [7], [16]. However, homophily has been shown to

play a similarly important role, and scholars have devoted

their attention to distinguishing between the two phenomena

and to comparing the size of their effects [11], [14], [34], [35].

Our work is related to the econometric literature on

instrumental variables. Instrumental variables have been
proposed as a tool to infer causal effects from observational

data [28]. This approach has been applied to a variety of

contexts, such as labor economics [36], the study of the

causal effect of education on earning [37], program

evaluation [38], the characterization of neighborhood

effects [39], and the impact of microfinance [40].

However, valid instruments can be difficult to find [41],

and scholars have warned against the risks of using ‘‘weak’’
instruments that do not predict variation in the endoge-

nous variable with sufficient precision [42].

A large body of research studies text meaning by

analyzing patterns of words or grammar [43]–[45].

However, the performance of most traditional classifica-

tion methods relies on sufficient text length, as in the case

of bag of words or kernel-based methods [46], [47]. The

analysis of short text from microblogging services (such as
Twitter or Facebook) requires new approaches [48]–[50],

which in some cases leverage metadata (e.g., user’s

information) or the content of related posts.

Although we mainly focus on the engineering aspects

of the detection and measurement of peer influence in

semantic expression, our work is also related to sociolin-

guistics. The full understanding of language in a society

requires us to consider the social network in which the
language is embedded, intended as the set of relationships

and interactions between its individuals [51]. Scholars

have argued that speech patterns might depend on the

looseness and tightness of the social network [52]. Our

model formulation allows us to take tie strength between

individuals into account. Different approaches have been

proposed to quantify tie strength in online social networks

[53], [54], and future research should investigate whether
strong ties play a major role in the spread of semantic

expression.

II . MODEL VARIABLES

We consider a set T of distinct days. For each day t 2 T, let

SðtÞ be the population on day t, and let nðtÞ ¼ jSðtÞj be

their number. To apply our method, we assume that

individuals can be geolocated at the level of cities. For each

city g let SgðtÞ be the set of individuals in city g on day t and

let ngðtÞ ¼ jSgðtÞj. In general, one might consider different
time and geographic resolution. We assume resolution at

the level of days and cities in accordance to our previous

work [21].

A. Quantifying the Semantic of
Text-Based Expression

Several methods can be used to quantify semantic

expression of the content posted by individuals (see

discussion in Section V). We referred to the semantic

categories defined by the Linguistic Inquiry and Word

Count (LIWC) 2007 [22], a word classification tool widely

used in the social sciences and in psychology research
[23]–[27]. The LIWC contains several classes of processes,

each of which contains one or more semantic categories,

pertaining to affective processes, perceptual processes,

biological processes, social processes, and personal con-

cerns. A list of semantic categories from the LIWC is given

in Table 1. In [21], we considered the categories for

positive and negative affective processes. In general, a
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larger set C of semantic categories can be considered by
our method.

For day t 2 T and subject i 2 SðtÞ, let UiðtÞ be the set of

all content posted by subject i on day t, and let

uiðtÞ ¼ jUiðtÞj be its cardinality. For each subject i such

that uiðtÞ > 0, and each category c 2 C, let u
ðcÞ
i ðtÞ be the

number of elements of UiðtÞ containing at least one word

from category c, and let

y
ðcÞ
i ðtÞ ¼

u
ðcÞ
i ðtÞ
uiðtÞ

be the frequency, or usage, of category c by subject i on day

t. Note that 0 � y
ðcÞ
i ðtÞ � 1. Therefore, a subject i such that

uiðtÞ > 0 is characterized by jCj variables y
ðcÞ
i ðtÞ quantify-

ing her usage of words form all categories in C during day t.
Observe that a single piece of user content can contribute

to the frequency y
ðcÞ
i ðtÞ for several categories c.

B. Exogenous Control Variable
Our method relies on the availability of an exogenous

variable that affects the semantic expression of a person’s

friends but not (directly) the semantic expression of the
person. We call this variable the ‘‘instrument.’’ Our model

characterizes how a change in the instrument induces a

change in friends’ semantic expression, and how the

induced change predicts a change in the person’s semantic

expression.

There are many sources of exogenous variation in the

world, but we chose rainfall as the instrument, relying on

Table 1 List of Semantic Categories From the LIWC
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data from NCDC. For each city g, we consider the NCDC
station closest to it, and let �xgðtÞ ¼ 1 if that station

recorded rainfall on day t, and zero otherwise. For each

subject i 2 SgðtÞ, let xiðtÞ ¼ �xgðtÞ, that is, a binary indicator

variable of rainfall in city g. We focus on rainfall as the

instrument for several reasons. First, its geographical

resolution lends itself to the analysis of our geographically

aggregated model. Second, individuals in the same city

tend to experience the same weather on a given day.
Moreover, in [21], we show it is a robust instrument in the

sense that it captures enough variation of the endogenous

explanatory variable (friends’ emotional expression).

Other meteorological variables would have been a valid

alternative. The identification of valid instruments is

challenging and finding a systematic way to characterize

them is key to apply our method to more general contexts.

C. Social Network Information
For each day t 2 T, and subjects i; j 2 SðtÞ, let

ai;jðtÞ 2 ½0; 1� be the strength of the relationship from i to

j on day t, which need not be symmetric. Also, let

�iðtÞ ¼
P

j2SðtÞ ai;jðtÞ. In [21], we let ai;jðtÞ 2 f0; 1g, where

ai;jðtÞ ¼ 1 denotes that i and j were friends on day t. In this

case, �iðtÞ is the degree of subject i on day t (that is, the

total number of friends of the subject). Allowing ai;jðtÞ to
have any value between zero, one would allow to asses the

role of tie strength.

III . MODEL

A. Individual-Level Model
Recall that y

ðcÞ
i ðtÞ represents the usage of category c by

subject i on day t. We assume that y
ðcÞ
i ðtÞ is a function of

several terms, according to

y
ðcÞ
i ðtÞ ¼ �ðtÞ þ fi þ �c0;cxiðtÞ

þ �c0;c
1

�iðtÞ
X

j

ai;jðtÞyðc
0Þ

j ðtÞ þ �iðtÞ: (1)

�ðtÞ represents a ‘‘fixed effect’’ for day t and takes into

account temporal patterns of variation in the use of

category c (for example, people might be more likely to

write about work during the weekdays, or more likely to

write about health in the winter). fi represents a fixed

effect for subject i and takes into account different baseline

usage of category c for different people (for example, some

people might write about work more than others). xiðtÞ
represents the exogenous variables experienced by subject

i on day t. Equation (1) assumes that the effect of the

exogenous variable xiðtÞ is weighted by a coefficient �c0;c

(the same for all subjects i), whose sign and strength

represent the effect of the exogenous variable on usage of

semantic category c. The summation in (1) represents the

effect of usage of semantic category c0 2 C by i’s friends on

i’s usage of category c.2 Note that the effect of friends’
expression is assumed to be inversely proportional to i’s
degree �iðtÞ, compatible with the idea that a person with a

lot of friends is less likely to view posts by all of them. This

endogenous term is weighted by the coefficient �c0;c, which

represents the direction and strength of influence

(assumed to be the same for all subjects). Finally, �iðtÞ
are assumed independent and identically distributed

normal error terms with zero mean and variance �2, to
take unobserved factors into account.

The main parameter of interest is the coefficient �c0;c

for all c; c0 2 C, which expresses how a change in the

semantic expression of i’s friends affects subject i’s
semantic expression. However, the reciprocal causality

present in model (1) makes it difficult to obtain unbiased

estimates of the model parameters. This is due to the

inherent feedback present in the model. That is, there is
mutual influence between any pair of subjects i and j, and

influence might follow even more complex paths (for

example, i’s expression in category c might influence j’s
expression in category c0, which might affect k’s expression

in category c00). We address this issue in two steps, by first

proposing an aggregated version of model (1) that averages

over people who are in the same city (see Section III-B),

and then by relying to the method of instrumental variable
regression [28] (see Section III-C).

We also observe that model (1) is memoryless. This is

a simplifying assumption that makes the method of

instrumental variable regression easily applicable. More-

over, the model has one observation for each subject i
and day t 2 T, which, given a set of hundreds millions of

users, would be difficult to analyze without some form of

aggregation.

B. Geographical Aggregation
We average (1) over all ngðtÞ subjects i 2 SgðtÞ who are

in city g on day t

1

ngðtÞ
X

i2SgðtÞ
y
ðcÞ
i ðtÞ ¼

1

ngðtÞ

�
X

j2SgðtÞ
�ðtÞþfiþ�xiðtÞþ

�

�iðtÞ
X

j

ai;jðtÞyðc
0Þ

i ðtÞþ�iðtÞ
 !

:

This can be written as

�yðcÞg ðtÞ ¼ �ðtÞ þ �fg þ ��xgðtÞ þ � �Yðc
0Þ

g ðtÞ þ ��gðtÞ (2)

where we substituted �c0;c with � and �c0;c with � for ease of

notation. In (2), �yðcÞg ðtÞ is the average usage of category c by

2The model specification in (1) is not restricted to c ¼ c0. It allows us
to study the effect of usage of a semantic category c0 on a potentially
different category c.
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subjects who are in city g; �fg is the average baseline usage of
category c; �xgðtÞ is the average exogenous variable

experienced by the subjects (rainfall in city g, in [21]);
��gðtÞ is the sum of ngðtÞ independent normal random

variables with zero mean and variance �2 and, therefore,

has variance �2=ngðtÞ. The term �Ygt represents how usage

of category c by subjects in city g is affected by the usage of

category c0 by their friends, and can be written as

�Yðc
0Þ

g ðtÞ ¼
X

j

y
ðc0Þ
j ðtÞ
ngðtÞ

X
i2SgðtÞ

ai;jðtÞ
�iðtÞ

¼
X

j

y
ðc0Þ
j ðtÞAj;gðtÞ

where Aj;gðtÞ represents the strength of the relationship

from subject j to city g (normalized by the number of those

subjects), that is, the influence from j to city g.

The coefficients � and � are the same in (1) and (2).

That is, the coefficients of the individual level model (1) can

be estimated from the aggregated model (2). And note that

our approach is unlikely to create an ‘‘ecological fallacy,’’

which occurs when there are opposing effects at the
individual and aggregated level, as individuals in the same

city are very likely to experience the same weather [55].

Different instruments might lead to different situations.

Finally, the aggregated model (2) has a single

observation for each city g and day t, a much smaller

figure than the individual-level model (1), which would

have millions of observations for each day in a large data

set. This makes estimation more practical.

C. Instrumental Variable Regression
We are interested in estimating the parameter � in (2).

However, the explanatory variable �Yðc
0Þ

g ðtÞ is an endoge-
nous variable, that is, it can be correlated with both the

dependent variable �yðcÞg ðtÞ and the error term ��gðtÞ. Since

ordinary least squares regression would not produce

unbiased estimates for �, we use the method of

instrumental variable regression [28]. This method can

produce consistent and unbiased estimates even when

there is reciprocal causation (as in our case, where people

affect their friends and vice versa). All that is needed is an
instrument that predicts the endogenous variable but not

the dependent variable. More formally, given a linear

model of the form

y ¼ �xþ 	vþ �

where v is an endogenous variable correlated with both the

dependent variable y and the error term �, an instrument

for v is an exogenous variable z that does not appear in the

model equation, is correlated with v (conditional on all the
exogenous explanatory variables), and is not correlated

with the error term [28]. Moreover, we look for a variable

z such that, upon finding a relationship between z and v, z
affects v and not vice versa. Once such variable z is

available, instrumental variable regression estimates the

original model in two stages. First, the endogenous

variable v is projected onto the subspace of all exogenous

explanatory variables, according to the model

v ¼ �1xþ �2zþ 


where 
 is an error term uncorrelated with any regressor.

Then, the predicted values v̂ resulting from the projection

are used to estimate the model

y ¼ �xþ 	v̂þ �:

In our model, an instrument for the endogenous
explanatory variable �Yðc

0Þ
g ðtÞ is an exogenous variable z that

is uncorrelated with the error term in (2) [that is,

Covðz; �̂gðtÞÞ ¼ 0] and is partially correlated with �Yðc
0Þ

g ðtÞ
when controlling for the other exogenous explanatory

variables. In the context of our model, we can write

�Yðc
0Þ

g ðtÞ ¼ �0ðtÞ þ �f 0g þ �2�xgðtÞ þ �1zþ 
gðtÞ (3)

where 
gðtÞ is an error term that is uncorrelated with any

regressors and �0ðtÞ and �f 0g are time and subpopulation fixed
effects.

Equation (3) can be seen as the linear projection of
�YgðtÞ on the space of all the exogenous variables.

Substituting (3) into (2) yields

�yðcÞg ðtÞ ¼ �ðtÞ þ ��0ðtÞð Þ þ �fg þ ��f 0g

� �
þ ð� þ ��2Þ�xgðtÞ þ ��1zþ ��0gðtÞ (4)

where the error term is uncorrelated with all the

explanatory variables.

As the instrument z for �YgðtÞ, we define a variable �XgðtÞ
that combines rainfall experienced by the friends of

subjects in city g

�XgðtÞ ¼
X

j

xjðtÞ
1

ngðtÞ
X

i2SgðtÞ

1

�iðtÞ
ai;jðtÞ

¼
X

j

xjðtÞAj;gðtÞ ¼
X

h

�xhðtÞ
X

j2ShðtÞ
Aj;gðtÞ

¼
X

h

�xhðtÞBh;gðtÞ
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where the sum is over all cities h, and

Bh;gðtÞ ¼
1

ngðtÞ
X

i2SgðtÞ

1

�iðtÞ
X

j2ShðtÞ
ai;jðtÞ

represents the strength of the relationship from city h to

city g. We use �XgðtÞ to predict �YgðtÞ. �XgðtÞ is uncorrelated

with the error term in (2), and it is partially correlated

with �Yðc
0Þ

g ðtÞ.
The procedure above is equivalent to estimating the

model in (2) using two-stage least squares (2SLS)

regression. The first-stage regression estimates a model
of the form

�Yðc
0Þ

g ðtÞ ¼ �0ðtÞ þ �f 0g þ �1 �XgðtÞ þ �2�xgðtÞ þ �0gðtÞ: (5)

The second-stage regression uses the predicted values
�Yðc
0;predÞ

g ðtÞ from the first stage to estimate the model

�yðcÞg ðtÞ ¼ �ðtÞ þ �fg þ ��xgðtÞ þ � �Yðc
0;predÞ

g ðtÞ þ ��gðtÞ: (6)

Finally, recall that the variance of the error term
��gðtÞ is proportional to 1=ngðtÞ where ngðtÞ is the number
of individuals in a city. Therefore, we weight each

observation by the corresponding value of ngðtÞ. To

conduct the analysis, we use the function ivreg2 written

for STATA [56].

D. Dealing With the Exclusion Restriction
A key assumption of instrumental variables regression

is the exclusion restriction [28], according to which the

instrument �XgðtÞ must not directly influence the depen-

dent variable �yðcÞg ðtÞ. In our case, a person and some of her

friends are experiencing similar �xgðtÞ as they are in the
same city or in close-by cities. Therefore, in order to break

the correlation between �XgðtÞ and �xgðtÞ, we only consider

observations for city-day pairs ðg; tÞ such that �xgðtÞ ¼ 0 (in

[21], it did not rain in city g on day t). Conditional on

�xgðtÞ ¼ 0, (5) and (6) can be written as

�Yðc
0Þ

g ðtÞ ¼ �0ðtÞ þ �f 0g þ �1
�XgðtÞ þ �0gðtÞ (7)

�yðcÞg ðtÞ ¼ �ðtÞ þ �fg þ � �Yðc
0;predÞ

g ðtÞ þ ��gðtÞ: (8)

Note that since �xgðtÞ ¼ 0 the instrument �XgðtÞ now

depends only on friends who are in different cities (not

in city g). Therefore, our approach can only detect and

measure influence between individuals in different cities.

E. Robustness of the Instrument
In order to assess the quality of the estimates obtained

via instrumental variable regression, we also compute

diagnostic statistics. First, we need to verify that the model

is not underidentified. We use the Kleinbergen–Paap rk
LM statistic to test the null hypothesis of underidentifica-

tion [57]. Second, we need to verify that the instruments

are good predictors of the endogenous explanatory variable

in the first-stage regression (otherwise the instruments are
considered weak). Weak instruments would cause poor

predicted values in the first-stage regression and therefore

poor estimation in the second-stage regression. To ensure

the instruments are not weak, the Cragg–Donald Wald F
statistic must exceed the critical threshold suggested by

Stock and Yogo [58].

F. The Effect of a Person on Her Friends
We show that the coefficient � represents the expected

total effect of a person on her friends. In other words, it is

the number of additional posts containing a word in
category c posted by all of j’s friends on day t caused by

subject j’s own post. Recall the individual-level model (1)

y
ðcÞ
i ðtÞ ¼ �ðtÞ þ fi þ �xiðtÞ

þ �
1

�iðtÞ
X

j

ai;jðtÞyðc
0Þ

j ðtÞ þ �iðtÞ: (9)

Letting j be a subject who writes a post on day t, we

compare the cases in which j’s post contains a word in

category c0 ðyðc
0Þ

j ðtÞ ¼ 1Þ and that in which it does not

ðyðc
0Þ

j ðtÞ ¼ 0Þ. Simple manipulation of (9) shows that this
difference is given by �ai;jðtÞ=�iðtÞ. Summing over all

subjects i who wrote a post on day t, the total effect of

y
ðc0Þ
j ðtÞ ¼ 1 for a given subject j is

EjðtÞ ¼
�
P

i
ai;jðtÞ

�iðtÞ
: (10)

The expected total effect of a person on all her friends is
obtained by averaging (10) over all subjects j

�EðtÞ¼ 1

nðtÞ
X

j

EjðtÞ ¼ �
1

nðtÞ
X

j

X
i

ai;jðtÞ=�iðtÞ

¼� 1

nðtÞ
X

i

1

�iðtÞ
X

j

ai;jðtÞ¼�
1

nðtÞ
X

i

�iðtÞ
�iðtÞ
¼�:

Therefore, we can refer to the coefficient � as the

expected total effect of a person on her friends.
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IV. RESULTS

In this section, we review the results from [21] to show how

the method works. In future, we plan to apply the method
to other semantic categories using data from a variety of

social media platforms. The analysis in [21] was based on

the posts written by a large sample of English-speaking

Facebook users over a period of more than three years

between 2009 and 2012, and we restricted our analysis to

the categories of positive and negative emotions defined by

the LIWC. Although these two categories are negatively

correlated, they are not opposite sides of the same scale.
Heightened emotional arousal might cause users to express

themselves with both categories at the same time.

A. Model Parameters
Table 2 and Fig. 1(a) show that rainfall is a valid

instrument for both categories of positive and negative

emotion (reprinted from [21, Fig. 2A]). That is, it predicts

enough of the variability of the content posted that it

allows us to obtain reliable estimates of influence with our
method. Table 3 and Fig. 1(b) show statistically significant

estimates � of contagion (reprinted from [21, Fig. 2B]). In

particular, a person’s post in one semantic category can

cause friends to generate one to two additional posts in the

same category (see Section III-F). Also, an increase in the

usage of positive (resp., negative) emotion words by an

individual inhibits the usage negative (resp., positive)

emotion words by her social contacts.

B. Additional Tests
Since we would expect that friends’ future expression

does not predict a person’s current semantic expression,

we can consider the following placebo model:

�yðcÞg ðtÞ ¼ �ðtÞ þ �fg þ ��xgðtÞ þ � �Yðc
0Þ

g ðtþ �Þ þ ��gðtÞ (11)

where friends’ future usage of category c0 appears as an

explanatory variable. We need to choose a lag of � days in

order to break the correlation between friends’ present

rainfall �XgðtÞ and future rainfall �Xgðtþ �Þ. We can then

estimate the model via 2SLS regression using friends’
future rainfall �Xgðtþ �Þ as the instrument, and we would

expect not to find statistically significant estimates of �. In

[21], we set � ¼ 30 days and we found statistically

insignificant estimates of � for all considered models.

To test whether our estimates of influence are driven

by people writing posts about the weather (a situation that

would change our interpretation of the results), in [21], we

considered a meteorological glossary supplied by the
National Oceanic and Atmospheric Administration

(NOAA),3 and for each i and t, we defined wiðtÞ as the

fraction of posts of subject i on day t containing a

meteorological word. We consider the following version of

model (1):

y
ðcÞ
i ðtÞ ¼ �ðtÞ þ fi þ �c0;cxiðtÞ þ �wiðtÞ

þ �c0;c
1

�iðtÞ
X

j

ai;jðtÞyðc
0Þ

j ðtÞ þ �iðtÞ

and its aggregated version

�yðcÞg ðtÞ ¼ �ðtÞ þ �fg þ ��wgðtÞ þ ��xgðtÞ þ � �Yðc
0Þ

g ðtÞ
þ ��gðtÞ (12)

where �wgðtÞ is the average of wiðtÞ over all people in city g.

The model is estimated via 2SLS regression, using �XgðtÞ as

the instrument. Our results showed that when we control
for weather-related words, the estimates of the influence

coefficient � for model (12) were unchanged with respect

Table 2 Estimates of the Coefficient �1 (With Additional Statistics and 95%

CI) for the First-Stage Regression of (7) for the Categories of Positive and

Negative Emotion. p Values Smaller Than 0.05 Reject the Null Hypothesis

of Zero Coefficient. The Kleibergen–Paap rk LM Statistics Reject the Null

Hypothesis That the Regression Is Underidentified [57]. The Cragg–Donald

Wald F Statistics Exceed the Critical Thresholds Suggested by Stock and

Yogo [58] to Ensure the Instruments Are not Weak. All Statistics Are

Robust to Heteroskedasticity, Autocorrelation, and Clustering. Reprinted

From Tables 6 and 7 of the Supplemental Appendix to [21].

Fig. 1. (a) Effect �1 of the instrument (friends’ rainfall) on the

endogenous explanatory variable (friends’ positive and negative

expression), from the first-stage regression. (b) Estimate of emotional

contagion �, from the second-stage regression. Vertical bars represent

95% confidence intervals. Reprinted from [21, Fig. 2].

3http://www.erh.noaa.gov/box/glossary.htm
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to those for the original model (2). This suggests that the
influence estimate is not driven by people writing posts

about the weather.

V. DISCUSSION

In [21], we proposed a rigorous method based on

mathematical modeling and instrumental variable regres-

sion to detect and quantify contagion of semantic expres-
sion in online social networks using observational data.

First, our method allows us to determine what semantic

categories are susceptible to peer influence between social

contacts. In particular, we showed that a person’s post

expressing positive or negative emotion can cause his or her

friends to generate one to two additional posts expressing

the same emotion. Second, it allows us to estimate a signed

relationship between different categories, characterizing
how an increase in the usage of a semantic category by an

individual alters the usage of another by her social contacts.

Third, our model allows us to quantify the cumulative effect

that a person has on all her social contacts.

One potential concern is the instrument’s weakness

[42]; rainfall has only a small effect in our analysis, but this

does not harm the validity of our conclusions because it is

the precision, and not the size of the estimate, that
matters. In the data set we used in [21], built from content

posted by millions of users, even a small effect is

statistically significant and robust to a multitude of

statistical tests against instrument weakness.

Our method limits inference to influence between

subpopulations (individuals in different cities). Drawing

conclusions about influence within a subpopulation
(individuals in the same city) using observational data

requires either the identification of a valid instrument or

the definition of a different approach. This is an avenue of

future research.

There are, of course, some limitations in inferring

causality from observational data, and robust instruments

may not always be available. Our model provides an

alternative method when a large scale experiment is
infeasible and researchers must rely on observational data.

In an experiment, one would directly control the state of

some people in order to track changes in their friends’

outcomes (semantic expression, in our case). With the

proposed approach, which constitutes a ‘‘natural experi-

ment,’’ the instrument (rainfall, in our case) constitutes a

source of variation that affects some people directly (those

experiencing it) but can predict changes in their social
contacts who do not directly experience it. Moreover, our

method can be easily applied to massive data sets (thanks

to aggregation), and allows us to perform multiple analyses

regarding several outcomes.

We advocate for the involvement of the engineering

community in the development of nonexperimental

methods of causal inference. On the one hand, it is an

open question how methods based on instrumental
variable regression generalize to different contexts (espe-

cially contagion within a population) and how to build

instruments in a systematic way. On the other hand,

although instrumental variables might provide interesting

answers, researchers should also develop and propose

alternative techniques. h
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INV ITED
P A P E R

Analyzing Temporal Networks
in Social Media
This paper reviews methods for analyzing recently temporal networks applied to social

media data.

By Petter Holme

ABSTRACT | Many types of social media metadata come in

forms of temporal networks, networks where we have infor-

mation about not only who is in contact with whom but also

when contacts happen. In this paper, we review methods to

analyze temporal networks developed in the last few years

applied to social media data. These methods seek to identify

important spreaders and, in more generality, how the temporal

and topological structure of interaction affects spreading

processes.

KEYWORDS | Network analysis; social network services; tem-

poral networks

I . INTRODUCTION

Many types of interactions in social media form temporal

networksVcollections of unique interaction events be-

tween pairs of individuals [1]. The structure of these

temporal networks determines the dynamics of informa-
tion spreading. To study such phenomena is of interest, not

only from an academic standpoint, but also for word-of-

mouth marketing and similar types of technologies that

rely on information spreading between people.

To understand how a large, integrated system functions

as a whole, one needs to zoom out and look at it from a

distance. In other words, one needs a consistent way of

simplifying and discarding irrelevant information. A
solution that has gained a huge amount of interest during

the last decade goes under the names of complex networks,

or network theory. In this paradigm, one only keeps the

information about the interacting units (in social media

that would typically be individuals or advertisers) and who
has been in contact with whom. Usually, even if one is

concerned only with metadata and not message content,

one has more information than only this static network.

The advantage with looking only at a static network (a

simple graph in mathematics jargon) is that one has a huge

toolbox for analyzing the data. If one also includes

information about when interaction events occur, i.e.,

studies a temporal network rather than a static network,
then the number of methods is much more restricted. The

good news is that the study of temporal networks has been

a very active field in the last few years, so the number of

methods that study synergetic temporal and topological

effects is increasing fast.

In this paper, we will review temporal network

methods and discuss how they can be used to understand

spreading events, identify influential spreaders, and
describe social organization as reflected in activities on

social media.

II . TEMPORAL NETWORKS AS A
MODELING FRAMEWORK

A. Representations and Types of Interactions
The two main classes of mathematical representations

of temporal networks are contact sequences and interval

graphs. These two concepts are more similar than their

names suggest. In contact sequences, a contact is assumed

to be instantaneous with respect to the temporal granu-

larity of the data. They could thus be represented as triples

ði; j; tÞ encoding an interaction between individual i and j at

time t. In interval graphs, one can picture an interaction
event as being temporally extended, so it has a beginning

and end time. Mathematically, a contact would be

represented as a quadruplet rather than triple ði; j; t; t0Þ,
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meaning that i has a contact with j that lasts from time t
to t0. In social media, the interaction is usually directed,

so that the order of the individuals i and j carries a meaning
in the contact representations. In many cases, the same

methods can be used for contact sequences and interval

graphs. The latter can always be reduced to the former at

the expense of some information loss. In this paper, we

focus on contact sequences. Fig. 1 illustrates some ways to

draw a contact sequence that displays all its information. It

is a system of six vertices, and already quite complicated.

Unfortunately, displaying social media data such as these
figures would not be very informative. They serve as a base

for the discussion of our concepts.

Social media interaction that would suit the contact
sequence format includes direct (e-mails or e-mail like)

messages [2], [3], Facebook wall posts [4] and friendships

[5], [6], Internet forum posts [7], [8], blogs [9],

microblogging [10], location sharing [11], etc. Usually,

assigning a time of an event is not completely trivial. From

a spreading point of view, the relevant time would be when

the recipient is exposed to the information, but it is often

the sending time that is stored in the logs of the media.
Most studies use this reception time as the only time stamp

of the contacts. This causes the short time order of events

to be jumbled and alters the paths that the information can

flow through, but probably not changes the results for

larger spreading events. (A thorough study of this bias

would be interesting.)

Interaction that takes the form of a dialog, either over a

voice or chat channel could be better modeled as an
interval graph. This type of data is rather well studied

when it comes to mobile phone communication [12]–[14]

(perhaps a border case of social media). We are not aware

of any study addressing voice call features embedded in

social media platforms (perhaps it makes sense not to

classify these as social media anyway). In the rest of this

paper, we will restrict our discussion to contact sequences.

One reason is that one can, and often does, reduce interval
graphs to contact sequences, either by discretizing time

and logging one contact in every interval of the contact, or

by taking the beginning (or the middle) of the interval as

the interaction time.

B. Models for Spreading Processes
There is a large and fast evolving field studying social

influence and other forms of information spreading
between people that are applicable to social media. There

are two main classes of such models: simple and complex

contagion models. The first class seeks to capture

processes where only one individual affects another (relays

a rumor, changes an opinion, etc.). Input from more than

one person is negligible with respect to the system-wide

dynamics. There is a popular idea that information

(Internet memes as a notable example [15]) spreads like
infections (as reflected in expressions such as ‘‘go viral’’).

Also, in the academic literature, the idea goes back about

half a century [16]. Even if this analogy can capture the

fundamental features of spreading, it can probably not

hold in a strict sense: transmission probabilities in

information spreading probably have much more individ-

ual variation than infectious disease spreading, and they

can be related to ongoing events (elections in the examples
of [15]) which is something one would never see in disease

transmission. Nevertheless, if the fundamental properties

of contagion are the same as for infectious diseases, then

one can, of course, borrow models from epidemiology to

understand spreading in social media. The basic class of

models for infectious disease spreading is called compart-

mental models [17]. These models divide people into

Fig. 1. Graphical representations of temporal networks. This figure

shows three ways of displaying a temporal network (more specifically

a contact sequence). Panel A shows a plot of the network of aggregated

contacts with the edges annotated with the times of contacts. Panel B

shows a timeline of the vertices where a contact is indicated by a

horizontal line. Panel C displays a timeline of edges where each contact

between the vertex pair is indicated by a triangle. This temporal

network illustrates the nontransitive nature of temporal networks.

Information spreading over the contacts could reach from A to B

(e.g., via the contact at time 17) and from B to D, but not from A to D via

B, because by the time the information would have reached B, all

contacts between B and D have already happened.
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classes, or compartments, with respect to the disease:
canonical classes include susceptible ðSÞ, infectious ðIÞ,
and recovered ðRÞ. The latter class comprises individuals

that have stopped being infectious and acquired immunity

to the pathogen, or died. In a social media context, R would

correspond to individuals that have had the information

but stopped being interested in spreading it further (like a

once viral video that people have lost interest in). The

second defining feature of compartmental models is that
they assign transition rules between the classes. One of the

rules that is (to the best of our knowledge) always included

is that a susceptible, upon encountering an infectious, with

some probability can become infectious.

Another type of simple contagion models are the ones

derived from the voter model [18], [19]. These are typically

nonequilibrium models to show spreading of an opinion

within a population. In the standard setting, one lets the
opinion of a person be an integer valued variable. Then,

one updates the system by iteratively picking a random

node i, then picking a random neighbor j of i and finally

copying j’s opinion to i. This model is analytically tractable,

but other than that it may be something of an oversim-

plification as a model of real information spreading.

Typically, one is interested in the time it takes for the voter

model to reach a state where every node has the same
opinion as its neighbors.

In complex contagion, spreading can be contingent on

the interaction with more than one other person. A

popular idea is that opinion spreads following a threshold

model [20]. The idea is that social contagion could happen

if someone has been influenced by a certain fraction of

others. In a temporal network, one would also have to

decide how to take time into account. For most cases,
social influence that happened a long time ago will not

matter in, for example, the adoption of a product or

spreading of an opinion. Karimi and Holme [21] discuss

this further and use a sliding time window to represent the

duration of possible influence. Takaguchi et al. [22] use an

exponentially decaying weight for the same purpose in a

bit more elaborate model of social contagion.

C. Time-Respecting Paths, Components, and
Distances

Any process that is confined to a temporal network has

to follow sequences of contacts of increasing times. (In

some situations, depending on the spreading process in

question, one would also allow nondecreasing times, so

that the spreading could pass two contacts at the same time

step.) There are a few different names for such a sequence
of contacts; we will follow Kempe and call it a time-

respecting path [23]. Although a time-respecting path, as a

concept, is the counterpart of the paths in static graphs, it

has some fundamentally different properties. To begin

with, if, at time t, one can reach node j from node i by a

time-respecting path, this does not imply that there is a

time-respecting path from j to i at time t. In other words,

the property of i being connected to j is not commutative.
This property is the same for directed graphs. As a

consequence, just like for directed networks, one can talk

about strongly and weakly connected components in

temporal networks. A strongly connected component is a

set of vertices where one can reach from any vertex to any

other vertex following time-respecting paths (e.g., B, C, D,

and E in Fig. 1). To define a weakly connected component,

we first construct an undirected graph where edges
represent pairs that have at least one contact throughout

the sampling time. A connected component in this graph

would then be a weakly connected component in the

original temporal network.

There are, however, other features of temporal net-

works that set them aside from directed graphs. Most

conspicuously, time-respecting paths are not transitive.

This means that even if, at time t, there are time-respecting
paths from i to j and from j to k, there are not necessarily

any time-respecting paths from i to k. This is the case if all

time-respecting paths from j to k have already happened by

the earliest time that a time-respecting path from i reaches

j. As a word of caution, since a time-respecting path is a

collection of contacts that happen at certain times, a

statement such as ‘‘there is a time-respecting path between

i and j’’ is ambiguous. One always needs to specify a time t,
meaning that at t you can reach j from i following a time-

respecting path. In Fig. 1, there is a time-respecting path

from F to A at time 5 but not at time 10. Also, for

components, one needs to specify a time. An interesting

extension of the component concept would be to consider

sets of vertices that are, within a time window, transitive.

A useful concept related to time-respecting paths is the

set of vertices that, at a certain time, can be reached by
time-respecting paths from vertex i, which is called the set

of influence of i. This is important for spreading processes,

as it is the set of vertices that can eventually be influenced

by i. Some studies have measured the reachability ratio:

the average fraction of vertices in sets of influence

averaged over all beginning times during the sampling

time [24]. Similarly to the set of influence, one can also

define the source set of i: the set of vertices that can reach i
through time-respecting paths within an observation

window. This set consists of all vertices that can be the

source of a spreading process influencing i. The work of

Moody [25] is the earliest we are aware of that studies the

size of the source set (the source count).

Of course, since the source set and set of influence are

time specific, one may also monitor the reachability ratio

and source count functions of time, i.e., study how many
other vertices may reach vertex i by time-respecting paths

by time t0, when the paths begin no earlier than t G t0.
For static graphs, the distance between two vertices is

defined as the length of the shortest path joining them

(where path length is defined as the number of links

forming a path). Short average distance is, of course,

assumed to be a sign that a temporal network is efficient
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with respect to spreading. One of the main findings for
static networks is that they are often remarkably compact.

This ‘‘small-world phenomenon’’ exists in virtually all

empirical networks except where links are physical objects

(such as roads, powerlines, etc.). Naturally, when the

dimension of time is added to the picture, it is useful to

define similar quantities characterizing how quickly

vertices can reach each other through time-respecting

paths. Cooke and Halsey studied this kind of quantity in
the 1960s [26]. The precise definitions of such quantities

are not completely straightforward. How should one, for

example, compare the two, if one exists half of the

sampling time and another only 10%.

A time-respecting path is associated with duration,

measured as the time difference between the last and first

contacts on the path. (Even though the dimension is time,

some authors have called it the temporal path length [12].)
So the duration of the path from F to A in Fig. 1 is 18 (the

first contact that can be involved in spreading is between F

and E at time 1; the last contact is between B and A at time

19). Analogously to the shortest paths of static graphs,

which define the distance, one can study the fastest time-

respecting path(s) between two nodes.

The concept of latency was originally introduced in the

field of distributed computation [28]. A central problem in
this area is to keep track of the age of information that a

vertex has about other vertices. Then, one commonly

assumes that vertices in contact update each other’s

information so that, after contact, both vertices share the

most recent information that either of them had before

contact. This scenario is similar to the fastest spreading

limit of spreading processes (for example, a disease-

spreading model with 100% per-contact infection
probability).

We will sketch the framework of latency as introduced

by Lamport [27] and further developed by Mattern [28].

Consider information spreading in a temporal network

and, specifically, vertex i. Then, let �i;tðjÞ denote the latest

time such that information from j could have reached i by

time t. This quantity is called i’s view of j’s information

at time t. Furthermore, �i;tðjÞ ¼ t� �i;tðjÞ is called j’s
information latency, or just latency, with respect to i at

time t, and is thus a measure of how old i’s information

coming from j is at time t. For example, the latency

from F to A in Fig. 1 at t ¼ 17 is 10. In other words,

�A;17ðFÞ ¼ 7, so �A;17ðFÞ ¼ 17� 7 ¼ 10. Finally, vector

½�i;tð1Þ; . . . ; �i;tðNÞ� is called the i’s vector clock. A

difference to other approaches is that this concept is

looking backward in time. Looking forward in time, one
may define a quantity corresponding to latency (temporal

distance [12]) �i;tðjÞ that measures how long it takes to

reach j from i along the fastest path, starting the clock at

time t. The expected temporal distance for a random

starting time is called reachability time [24]. An adaptation

of the vector-clock concept to social media data can be

found in [29].

As we allude to above, latency and vector clocks form a
basis for measuring times and optimal spreading speeds in

temporal networks. However, taking an average over the

sampling time to get a value for the entire graph, or even

only for a pair of vertices, is not that straightforward.

Problems are typically related to the finite time windows of

empirical data sets. For example, as the time gets closer to

the end of the sampling, the number of time-respecting

paths between a pair of vertices decreases. If the sampling
would be longer, one could presumably see more time-

respecting paths starting even before the last time-

respecting paths. One possible quantity for measuring

the velocity of paths in general is to find all fastest time-

respecting paths between vertices and then compute the

average duration of such paths. This measure would,

however, not reflect the frequency of the paths, and would

not be affected by waiting times before the first contacts of
such paths. For example, if one or ten time-respecting

paths of one unit connect two vertices, this average

duration would equal unity in both cases.

Measuring the average latency is also complicated by

the fact that latency varies with time with a sawtooth

pattern [1]. The latency goes up linearly until there is

contact that is the beginning of a new time-respecting path

from the source node j, carrying newer information from i
than i already has. Close to the beginning of the

observation window, the latency is infinite as no time-

respecting path has reached its destination yet. In a steady-

state situation where all links are active throughout the

sampling time, it would be a good approximation to

assume that the proceeding time interval of the sampling

duration is similar to the first. This suggests a boundary

condition where one repeats the entire temporal contact
sequence, and thereby gets around the problem where

there are few paths in the beginning of the sampling time.

However, this procedure may give rise to artifacts and

connect pairs of vertices that are not connected at all

within the observation window. Yet another option would

be to average the time between the first and last contacts,

which would underestimate any spreading processes,

especially for short paths.
For long enough periods of observation, another

difficulty comes from the dynamics of vertices entering

and leaving the system. For disease spreading in empirical

data sets, this turnover of vertices and edges has been

argued to be of great importance [30], [31]. In such a case,

the question about how large a spreading event can be is

probably more important than the time it takes to reach

between the vertices.
Finally, here are some words of caution about the

terminology. Some authors use the terms as distance and

length as measures of time, e.g., Kossinets et al. [32] define

the ‘‘distance’’ between two vertices as the shortest

duration of any time-respecting path between them.

Tang et al. [33] calls the average time to reach vertices

for time-respecting paths starting early in the data
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Fig. 2. Illustration of various randomization schemes. Each panel shows a possible instance of a randomization scheme applied to the

network in Fig. 1. In panel A, the random permuted (RP) times method, the time stamps are randomly shuffled between the contacts.

The resulting temporal network has the number of contacts per time and the number of contacts per edge conserved. For example, at time 2,

there are two contacts both before and after applying the randomization scheme (see the boxed number). Similarly, the edge (B, C) has

three contacts before and after randomization. In panel B, we show the random time (RT) scheme where time stamps are not swapped

(as in RP) but created. Thus, this randomization does not conserve the number of contacts per time period (so, as illustrated, at time 2 the

number of contacts changes from two to zero). In C, we illustrate the random contact (RC) randomization, which does not conserve the

number of contacts per edge. After randomization, the (B, C) edge has two contacts, rather than three. Panel D shows the randomized

edge (RE) scheme that keeps the degrees in the network of accumulated contacts constant, but randomizes the edges. Furthermore,

the timelines of edges are held fixed. Panel E shows the combination of RC and RE where the only thing conserved is the degrees in the
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‘‘temporal path length.’’ To be fair, we should point out
that ‘‘distance,’’ as in the standard static graph definition,

is also a misnomer, being a dimensionless quantity.

Furthermore, statistics of latency have several names

even though their definitions and purpose are very similar:

‘‘reachability time’’ in [24], ‘‘temporal proximity’’ in [34],

‘‘characteristic temporal path length’’ in [33], and ‘‘tem-

poral distance’’ in [12].

D. Randomization Techniques
In static networks, network structures are a key to

understanding both the forces that shape the network and

how dynamic processes on the network behave. The loose

definition of network structure is that it is the way the
network differs from a random network. To make this

definition operational, one commonly specifies a null

model, a model for how to construct a network that is

random except the most fundamental constraints. What is

fundamental depends on the system one studies and the

type of analysis one wants to do. Probably the most

common null model for static networks are networks with

the same set of degrees (and consequently the same
number of nodes and links) as the original network. One

can easily sample such networks by randomizing edges:

one picks random pairs of edges ði; jÞ and ði0; j0Þ and swaps

them to ði; j0Þ and ði0; jÞ or ði; i0Þ and ðj; j0Þ (unless swapping

would introduce a self-link or a multiple-link). Then, one

could compare quantities, such as the number of triangles,

in the real network to the average number of triangles in

the null model. If there is an overrepresentation of
triangles in the real network compared to the null model

(which is commonly the case in social networks), one can

conclude that the network was formed by a process that

has a bias for triangle formation (such as people getting

acquainted with one another by being introduced by a

common friend). Furthermore, one can study processes on

the network (spreading phenomena, for example) and

compare properties of the process in the real networks and
the randomized networks.

Comparing the real data with a null model based on

randomizing the real data becomes even more powerful in

temporal networks; it is probably the only way to

consistently analyze temporal and topological features of

the data, and thus to discover synergetic features where
time and topology together influence a spreading process.

Since there are several possible temporal correlations and

several time scales where the correlations can affect the

system, there will not be any method as common as the

random link shuffling procedure described above for static

networks. Rather, by designing appropriate null models,

one may switch off different types of correlations in order

to understand their contribution to some quantity
describing a process on the temporal network (such as a

measure of the spreading speed). A typical use for such

models in studies of spreading processes would be to apply

them sequentially, and by monitoring how the dynamics of

the process depends on these null models, to pinpoint the

role of different temporal and topological correlations on

the process. If removing a certain type of correlations

changes the dynamics more than another, then obviously
the first played a more important role for the spreading

process.

Below we review temporal-network null models

introduced in the literature (some of them are illustrated

in Fig. 2). The first paper using this type of methods was

(to the best of our knowledge) [24]. At the end of the

section, we summarize and provide some guidelines for

choosing reference models. A summary of the randomiza-
tion techniques can be found in Table 1.

1) Randomized Edges (REs): This method is similar to the

edge swapping for static graphs mentioned above, with

the additional fact that contact sequences of edges follow

the edges when these are rewired. In pseudocode, the

method is defined as follows.

1) Go over all edges sequentially.
2) For every edge ði; jÞ, pick another edge ði0; j0Þ.
3) With a probability 1/2, replace ði; jÞ and ði0; j0Þ by

ði; j0Þ and ði0; jÞ; otherwise, replace them by ði; i0Þ
and ðj; j0Þ.

4) If the move in step 3) created a self-edge or a

multiple-edge, then undo it and start over from

step 1).

The times of contact over an edge are kept constant.
Note that the two alternatives in step 3) where one is

randomly selected are needed to remove spurious

Table 1 Summary of the Randomization Techniques and Which Structures They Preserve (Everything Else Is Randomized)
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correlations if (as is usually the case) the data structure
store edge returns the vertices of an edge in a specific

order. Without this rule, one would keep the number of

times a vertex appears in the first argument conserved,

which could give very different results. This algorithm is

usually not a bottleneck in a temporal-network analysis,

but to speed up the process, one can skip edges that

already have been rewired in 3).

Just as for static network, this null model can be used to
study the effects of the network topology (apart from the

degrees, the number of neighbors). The model implicitly

also assumes that it is the edges rather than the vertices

that govern the times of contacts. This is evident since,

after the randomization procedure, both the number and

times of contacts for a vertex will probably have

changed. However, their degrees in the aggregated

network are the same. As the contact sequences follow
their edges when rewiring, all temporal correlations and

inhomogeneities associated with individual edges, such

as burstiness and the distribution of intercontact times of

edges, are retained. Also the system-wide contact rates

are unaltered.

2) Randomly Permuted (RP) Times: To understand the

role of the order of the contacts, one performs the RP
randomization. In this procedure (used in, e.g., [14] and

[35]), one permutes the contact times randomly while

keeping the network structure and the numbers of contacts

between all pairs of vertices fixed. Technically, this is

much simpler than applying the edge-rewiring scheme

discussed above, as it only requires randomly swapping the

time stamps of all contacts. No checks similar to step 4) of

the RE rule need to be performed for contact sequences.
Like RE, this scheme also retains the overall rate of events

in the network at every point in time, such as daily or

weekly patterns in communication networks.

3) Random Times (RTs): The ensemble defined by RE

and RP randomizations conserves the set of times of the

original contact sequence. Hence, although it destroys

time structures of events related to individual vertices and
edges, the rate of events in the entire temporal network is

unchanged and will still follow the typical circadian and

weekly patterns of human activity (see, e.g., [36]–[39]).

This type of randomization needs a process where

spreading depends on time, not only the order of contacts

(such as the SIR model of disease spreading, where

individuals would change state even though no contact

happens). In maximal speed spreading such as the one
behind the latency discussion above, this randomization

would have exactly the same effect as RP. Note that an

alternative to uniformly random contact times is to

generate them from a specific distribution or process,

such as the Poisson process, with parameters set up so that

the numbers of contact per each edge are, on average,

conserved.

4) Randomized Contacts (RCs): For this randomization
scheme, one keeps the graph topology fixed but redis-

tributes the contacts randomly among the edges. After this

randomization, the number of contacts per edge follows

the binomial distribution. It is intended to test the effect of

fat-tailed distributions of this quantity as typically seen,

especially in social media and other forms of human-

generated communication data. If one would like to test

the effect of the distribution of the number of contacts
alone, keeping the structure of the temporal order of the

real data, then one would need a different approach. For

example, a vertex that is active primarily in the early stage

of the data would be so in the randomized data as well, but

one would need to compensate for such effects.

5) Equal-Weight Edge Randomization (EWER): Some-

times one would need to remove correlations between the
static network structure (the network of accumulated

contacts), and at the same time retain the temporal

structure of the edges (including the interevent time

distributions of edges). This is achieved by randomly

swapping entire contact sequences of edges with the same

number of contacts. For example, all the contacts and their

time stamps are randomly exchanged between edges that

have the same number of contacts. Thus, single-edge
patterns, such as burstiness of the contacts between two

individuals, are retained, together with other properties

preserved by the RP model (like the number of contacts of

an edge, the system-wide contact frequency, and the

topology of the network of accumulated contacts). This

null model requires a large enough system so that there are

enough edges with the same number of events.

6) Edge Randomization (ER): This null model is similar

to the EWER model with the exception that the sequences

can be exchanged between edges that have any numbers of

contacts. This corresponds to randomly exchanging the

edge weights (measured as numbers of contacts) in the

network of aggregated contacts. The correlation between

weight and topology is destroyed in this null model.

However, the intercontact time distributions of contact
sequences of edges are preserved; the sequences are just

moved elsewhere in the network. Both EWER and ER were

introduced in [12].

7) Time Reversal (TR): This null model is designed for

assessing the frequency and importance of causal

sequences [40] of contacts, where, for example, contacts

trigger further contacts. It simply involves running the
original event sequence backward in time. If sequences of

consecutive contacts would be caused by temporal

correlations alone, similar numbers of such sequences

should be observed when time runs forward and backward.

A lack of such chains in the time-reversed null model

compared to the original sequence could be attributed to

the arrow of time.
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8) Summary and Guidelines: The different randomized

reference models discussed above retain and destroy

specific kinds of topological and temporal correlations,

for example, in studies of processes on the temporal

network. They allow for pointing out the importance of

various correlations; the most important correlations can
be pinpointed by comparing the effects of different

randomization models on the dynamics. The RE and RC

models permute edges and contact times. Taken together

(RC þ RE) they destroy all correlations except for the

degrees of the network of accumulated contacts; this

provides a good starting point for the limiting case of

uncorrelated temporal networks. If one randomizes the

contact times (RT), the overall contact frequencies are also
removed. When studying the roles of the exact contact

timings on edges and the correlations between adjacent

edges, comparing the EWER and ER models to the RT

model should work, as the static network features are

retained, except for correlations between weight and

topology that can be removed by ER. An illustration of

some of these randomization schemes can be found

in Fig. 2.
In Fig. 3(a), we show an example of these techniques

applied to a social media data set. The temporal network in

this case records the interaction (private messages, posts

on home pages, and friendship requests) on an Internet

dating site [41]. The data set records 536 276 contacts over

174 662 edges between 29 341 users for 512 days. First, we

note that there is a very strong effect of the temporal

ordering. These randomization schemes all keep the
network of accumulated contacts unchanged. Still the

reachability ratio can differ more than a factor of three.

Even a very mild randomization such as RP, which tests the

effect of the order of an event, increases the reachability
ratio from 29% to 47%. Comparing RP and RT, the

reachability ratio increases further, meaning that the

actual time things happen makes spreading reaching fewer

people. Applying the RC scheme makes spreading yet less

efficient, so the heterogeneous distribution of contacts per

edge [24] also limits the spreading. Randomizing the

edges, on the other hand, decreases the reachability ratio

from its original value, but not much. Changing the
temporal properties (such as the previously mentioned

randomization schemes) is thus more influential than the

topology of the network of accumulated contacts. Further

proving this point, the combination of RE and RC gives the

largest reachability ratio. In Fig. 3(b), we show reachability

times for the same data set as in panel A. All the

randomizations that preserve the network topology speed

up spreading, meaning that all (considered) temporal
structures slow down spreading. This has been called the

‘‘slow-world effect’’ [14] (paraphrasing the ‘‘small-world

effect,’’ empirical static networks do often have very short

average path lengths). The slow-world effect is not

completely universal. Rocha et al. [35] find the reversed

situation in a network of sexual contacts reported on a

web forum.

E. Centrality and Influential Spreaders
There has been a tremendous interest in identifying

important spreaders in the social media literature (see,

e.g., [42]–[44] and further references therein). Note that

‘‘influential’’ (someone who are likely to influence many

others) is not necessarily the same as ‘‘important’’

(someone who is able to boost a spreading process).
Important spreaders also need to be susceptible to

influence [42]. Except obvious applications such as seeding

word-of-mouth advertisement [42]–[44], finding impor-

tant spreaders could, for example, be useful in the

detection of disease outbreaks and other applications in

public health (this is discussed further in Section III).

In static networks, concepts such as influential and

important are often read synonymously to centrality.
There are a number of centrality measures for static

networks, each capturing a different facet of centrality.

Many of these measures can be translated to temporal

networks fairly straightforwardly. For example, between-

nessVroughly how many shortest paths that pass through

a vertexVcan be adapted to temporal networks by

changing shortest paths to shortest time-respecting paths.

It gets a bit more complicated with measures based on
distances [33]. Closeness is defined as the reciprocal

average distance from a node to the other nodes of a static

graph. A simple way of dealing with missing time-

respecting paths is to measure the average reciprocal

distance (rather than the reciprocal average distance) and

let a missing time-respecting path make a zero contribu-

tion to the average [12], [45]. Furthermore, as discussed in

Fig. 3. Reachability ratio and reachability time analysis for

interactions on an Internet dating site. Panel A shows the reachability

ratio for the empirical temporal network: the probability there is a

time respecting path between a pair of vertices at a random time.

Panel B shows the reachability time: given there is a time-respecting

path from one vertex to another, then what is the expected time for the

information to complete this path (assuming it spreads over a

contact whenever it can)? Averages over randomizations are over

104 runs. Standard errors are not larger than 0.01 in A and 0.5 in B

(and thus too small to be meaningful as error bars).
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[46], measures such as Katz centrality and PageRank can
be generalized to temporal networks.

Another approach to identifying important spreaders is

the vaccination problem. Assume you could vaccinate a

fraction of a population for a future disease outbreak.

Then, how can this fraction be chosen? This differs from

the centrality approaches of finding important spreaders as

it also takes the chance of getting the disease (or

information, if we think of social media) into account. A
celebrated approach in static networks is the neighbor

vaccination method: pick persons at random, ask them to

name an acquaintance (or someone they met when the

disease in question could have spread), and then vaccinate

the acquaintance. The probability the friend has a degree k
is proportional to k; so high-degree individuals have a

higher chance of being vaccinated. Lee et al. [47] proposed

a version of this where one asks the randomly chosen
person to name the most recent, or most frequent (some

time in the past), acquaintance. Starnini et al. [48]

proposed further improved methods. Such methods can

exploit temporal heterogeneities and improve the effi-

ciency of neighborhood vaccination.

F. Network Motifs
The idea behind network motifs comes from electron-

ics. Small overrepresented subgraphs, primarily in direct-

ed networks, could be interpreted as building blocks in the

network such as transistors in electronic circuitry [49]. In

temporal networks, motifs have a bit different role. Rather,

temporal network motifs are often thought of as common

sequences of contacts among a small group of people. For

example, Kovanen et al. [13] focus on contact sequences

between vertices that are maximally separated by a time �t.
Specifically, two contacts are said to be �t-adjacent if they

share a vertex and are separated in time by �t or less. Pairs

of contacts are then defined as �t-connected if there is a

sequence of �t-adjacent events joining them. Then,

Kovanen et al. proceed counting �t-connected subgraphs

and comparing their frequency to those in randomized null

models. They find an overrepresentation of subgraphs that

seem to be causally connected (such as A contacts B who
contacts C and D, as opposed to a noncausal sequence

where B contacts C and D, and then A only contacts B).

This work was motivated by cell phone call data, but its

methodology could be straightforwardly applied to social

media data. Also, not quite social media data, Jurgens and

Lu [50] studied the evolution of Wikipedia by counting

similar motifs. They associated common motifs with edit

episodes such as ‘‘content reversion and antivandalism’’ or
‘‘collaborative editing.’’

G. Simplifying Temporal Networks
A final class of methods is how to simplify temporal

network data. As mentioned above, it is hard to visualize

temporal networks to give a feeling of the structure of even

mid-sized data sets. For this reason, and also the more

fundamental purpose to understand the important struc-
tures for spreading processes, one would need to simplify

temporal network data. One approach is to project a

temporal network to a static network. The straightforward

way, to include an edge between all pairs of individuals

that has at least one contact during the sampling period, is

not always a good idea. If one is interested in a spreading

process, that kind of projection could include too many

irrelevant edges [51]. Holme [52] proposed either a
carefully selected time window (and made a network of

aggregated contacts within that window), or an exponen-

tial threshold representation where each contact contri-

butes to an edge’s weight with a term that is decaying

exponentially from the start of the spreading process. This

representation was shown to perform well to make a static

network where the static network predictors of node

importance for disease spreading match their actual
importance in simulations directly on the temporal

network.

Another type of projection to static graphs that could

be useful, at least for very sparsely connected contact

structures, is reachability graphs, or ‘‘path graphs’’ [25], or

an ‘‘associated influence digraph’’ [53]. In these graphs, a

directed edge from A to B means that (in the beginning of

the data) there is a time-respecting path from A to B. This
type of graphs tends to be extremely connected to real-

world networks and thus not well adapted to complex

network methods. See Fig. 4(a) for an illustration.

Instead of simplifying temporal networks to static

networks one could project them to simpler forms of

temporal networks. Holme and Liljeros [31] discuss

‘‘pictures’’ or components in models of temporal networks.

In particular, two pictures are contrasted: a link turnover
picture where one thinks of the first and last contacts of an

edge as its beginning and end and ignores the timing of the

other contacts; and an ongoing link picture where one

thinks of the links as continuously active and the contacts

as drawn from a probability distribution (perhaps reflect-

ing a bursty interevent time statistics). Holme and Liljeros

[31] argue that, with respect to disease spreading and

empirical data sets, the link turnover picture is a better
way of simplifying temporal networks. Fig. 4(b) and (c)

illustrates the link turnover and ongoing link pictures,

respectively. Ultimately, what determines which picture is

most relevant depends on the relative time scales of the

spreading processes and sampling time. If the sampling

time is much shorter than spreading processes, then the

ongoing link picture will be more relevant, and vice versa.

III . DISCUSSION AND CONCLUSION

Social media generate huge amount of metadata that could

be used to understand social information flow, identify

important spreaders, etc. Many kinds of such metadata

could be represented as temporal networks, networks that

record when contacts happen, in addition to who has been
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in contact with whom. The field of temporal networks is

still young and under rapid development. Probably, there

are methods more specifically suited for social media data

waiting to be developed. Nevertheless, there are a number

of, primarily computational, techniques to analyze social

media data sets that we discussed in this paper. These

methods serve to identify important spreaders, character-
ize the behavior of the social media users, and map out

temporal and topological structures. Recently, there has

been much advancement in understanding of how such

structures affect spreading phenomena [54]–[56]. It would

be interesting to validate such theories using social media

data. This would be happening in a different way than

usualVinferring predictors of spreading cascades from

data [42], [57], [58]. Both fields of temporal networks and
theory of social media need each other; the former needs

real data to test and develop theories, and the latter needs a

theoretical framework to handle large time-resolved data.

Word-of-mouth marketing and the detection and

surveillance of infectious disease are two areas where

temporal network methods have a great potential of

improving existing methods [59]. These are areas where

researchers already have applied static network methods to
a great extent. At the same time, the underlying

interaction has a strong temporal component, meaning

that temporal network techniques could potentially be

very fruitful. For example, Christakis and Fowler [60]

propose to use neighbors of random individuals as

sentinels for detection of epidemic outbreaks. Neighbors

of average nodes are more central than average [61], which

could be exploited. Christakis and Fowler do not discuss

the use of social media data as such, but social networks in

general. However, finding infected individuals from social

media data is not difficult per se [62]–[65], so their method

seems possible to straightforwardly extend to this type of
data, and possible to improve by methods like the ones

discussed in this paper (Sections II-E and II-G). Social

media data could also be used to monitor the sentiments

toward public health programs [66], [67]. Temporal

network methods could be used to analyze or model the

opinion spreading behind changes in this type of

sentiments.

Another interesting application of temporal networks
to social media data could be network interventions in the

process of ‘‘using social network data to accelerate

behavior change or improve organizational performance’’

[68]. A typical application would be to identify individuals

or groups whose change of behavior can trigger a cascade

of behavioral change. Another typical task is to find

undesired grouping, splits, or hierarchical dependencies in

the social network of an organization, and then find a way
to improve the situation by reorganizing. These social

networks that network interventions rely on are not static

and in the dynamic aspects of their nature lies much

information that could be exploited by methods described

in this paper.

Fig. 4. Illustration of ways to simplify temporal network data. Panel A shows the reachability graph of the contact sequence displayed in Fig. 1.

Panel B illustrates the link turnover picture as applied to the Fig. 1 network. In this picture, one thinks of the first observed contact as the

beginning of the edge and the last contact as the end of the edge. Panel C illustrates the ongoing link picture where one assumes that the temporal

network can be well described as an underlying static network with contacts happening over the edges following some interevent time

distribution.
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In this paper, we have tried to argue that temporal
network techniques are well suited for social media data.

Compared to many other areas within the umbrella term of

network science (including traditional social network

analysis, focusing on [69] and [70]), social media data

are accurately time tagged, and thus readily analyzable by

temporal network methods. We have mentioned how

temporal structures can change dynamics of information

spreading events. Clearly, without using temporal infor-
mation, prediction and modeling would be less precise,

just as the static network structure can add precision

compared to well-mixed models. Not only that, one could

miss the most important ways to estimate the spreading
speed, decide who is the most important (or influential)

individual, find efficient ways to mitigate or enhance

spreading, etc. Temporal network approaches to social

media are, we believe, an understudied area, so we

expect much more research in this direction in the near

future. h
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P A P E R

Tracking the Digital Footprints
of Personality
This paper reviews literature showing how pervasive records of digital footprints can be

used to infer personality.

By Renaud Lambiotte and Michal Kosinski

ABSTRACT | A growing portion of offline and online human

activities leave digital footprints in electronic databases.

Resulting big social data offers unprecedented insights into

population-wide patterns and detailed characteristics of the

individuals. The goal of this paper is to review the literature

showing how pervasive records of digital footprints, such as

Facebook profile, or mobile device logs, can be used to infer

personality, a major psychological framework describing

differences in individual behavior. We briefly introduce

personality and present a range of works focusing on

predicting it from digital footprints and conclude with a

discussion of the implications of these results in terms of

privacy, data ownership, and opportunities for future research

in computational social science.

KEYWORDS | Big data; personality; psychology; social networks

I . INTRODUCTION

In recent years, a growing portion of human activities such

as social interactions and entertainment have become

mediated by digital services and devices. The records of

those activities, or ‘‘big social data,’’ are changing the

paradigm in the social sciences, as it undergoes a transition

from small-scale studies, typically employing question-

naires or lab-based observations and experiments, to large-

scale studies, in which researchers observe the behavior of
thousands or millions of individuals and search for

statistical regularities and underlying principles [1]–[6].

These works provide empirical observations at an unprec-

edented scale offering the potential to radically improve

our understanding of the individuals and social systems.

One of the major insights offered by big social data

research relates to the predictability of individuals’

psychological traits from their digital footprint [3]. Ability
to automatically assess psychological profiles opens the

way for improved products and services as personalized

search engines, recommender systems [7], and targeted

online marketing [8]. On the other hand, however, it

creates significant challenges in the areas of privacy [9],

[10]. The main goal of this paper is to provide a review of

the works investigating the potential of the big social data

to predict a five-factor model of personalityVthe major
set of psychological traitsVsupporting further studies of

the relationship between personality and digital footprint

and its implications for privacy and new products and

services.

II . PERSONALITY

The most widespread and generally accepted model of

personality is the five-factor model of personality (FFM;

[11]). FFM was shown to subsume most known personality
traits, and it is claimed to represent the basic structure

underlying the variations in human behavior and prefer-

ences, providing a nomenclature and a conceptual

framework that unifies much of the research findings in

the psychology of individual differences. FFM includes the

following traits.

1) Openness is related to imagination, creativity,

curiosity, tolerance, political liberalism, and
appreciation for culture. People scoring high on

openness like change, appreciate new and unusual

ideas, and have a good sense of aesthetics.
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2) Conscientiousness measures the preference for an
organized approach to life in contrast to a

spontaneous one. Conscientious people are more

likely to be well organized, reliable, and consis-

tent. They enjoy planning, seek achievements, and

pursue long-term goals. Nonconscientious indivi-

duals are generally more easygoing, spontaneous,

and creative. They tend to be more tolerant and

less bound by rules and plans.
3) Extroversion measures a tendency to seek stimu-

lation in the external world, the company of

others, and to express positive emotions. Extro-

verts tend to be more outgoing, friendly, and

socially active. They are usually energetic and

talkative; they do not mind being at the center of

attention and make new friends more easily.

Introverts are more likely to be solitary or
reserved and seek environments characterized by

lower levels of external stimulation.

4) Agreeableness relates to a focus on maintaining

positive social relations, being friendly, compas-

sionate, and cooperative. Agreeable people tend to

trust others and adapt to their needs. Disagreeable

people are more focused on themselves, less likely

to compromise, and may be less gullible. They also
tend to be less bound by social expectations and

conventions and are more assertive.

5) Emotional stability (opposite referred to as

neuroticism) measures the tendency to experi-

ence mood swings and emotions, such as guilt,

anger, anxiety, and depression. Emotionally un-

stable (neurotic) people are more likely to

experience stress and nervousness, whereas emo-
tionally stable people (low neuroticism) tend to be

calmer and self-confident.

Research has shown that personality is correlated with

many aspects of life, including job success [12], attractive-

ness [13], drug use [14], marital satisfaction [15], infidelity

[16], and happiness [17]. The main limitations of classical

personality studies are, however, the size of the samples,

often too poor for statistical validation, and their strong
bias toward white, educated, industrialized, rich, and

democratic (WEIRD) people [18].

III . FROM OFFLINE TO ONLINE . . .

The increasingly prevalent access to digital media enables

large-scale online projects aimed at collecting personality

profiles and exploring their relations with digital foot-
prints. Personality has been investigated through different

types of online media, for instance, by focusing on website

browsing logs [2], [19], contents of personal websites [20],

music collections [21], or properties of Twitter profiles

[22], [23].

The most complete online social environment is

arguably Facebook, due to its popularity and rich social

and semantic data stored on its users’ profiles that can be

conveniently recorded. It is important to note that

Facebook profiles are increasingly becoming a channel
through which to form impressions about others, for

example, before dating [24] or before a job interview [25].

Moreover, research tends to show that a Facebook profile

reflects the actual personality of an individual rather than

an idealized role [26], and that personality can be

successfully judged by the others based on Facebook

profiles [27], [28]. These results suggest that personality is

manifested not only in the offline, but also online
behavior, and thus digital footprints can be used to

predict it.

The most popular data set used to study the

relationship between personality and digital footprint

comes from the myPersonality project. myPersonality was

a Facebook application set up by David Stillwell in 2007

that offered participants access to 25 psychological tests

and attracted over six million users. myPersonality users
received immediate feedback (see Fig. 1) on their results

and could donate their Facebook profile information to

research resulting in a database that, after anonymization,

is being shared with the academic community at

mypersonality.org, allowing for the study of hitherto

unanswered questions in a wide range of topics, such as

geographical variations in personality ([29]; see Fig. 2),

social networks [2], [22], [30], [31], privacy [32], language
[6] (see Fig. 3), predicting individual traits [33], [3],

computer science [34], happiness [35], music [36], and

delayed discounting [37].

IV. SOCIAL NETWORK STRUCTURE

Social network structure is one of the major types of digital
footprint left by the users, and a growing number of studies

shows that it is predictive of often intimate personal traits.

For instance, it is known that the location within a

Facebook friendship network is predictive of sexual

orientation [38]. Similarly, it is possible to accurately

detect users’ romantic partner by observing overlap in

social circles [39].

Fig. 1. Snapshot of a personality profile generated by the

myPersonality Facebook App, representing an individual that is liberal

and open minded (high openness), well-organized (high

conscientiousness), contemplative and happy with own company (low

extroversion), of average competitiveness (average

agreeableness), and laid back and relaxed (low neuroticism).
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Personality is expected to affect people’s social

network surroundings as it affects the types and number

of social ties formed by people. There are a number of

studies exploring this relationship. Neuroticism is usually
associated with negative social interactions, while extro-

version positively correlates with the size of the network

and greater social status [40], [41]. Results related to the

remaining traits tend to be inconsistent, perhaps due to

small sample sizes. More recently, Quercia et al. [31] used

myPersonality data set to study the relation between

sociometric popularity and personality traits, at a scale

several orders of magnitudes larger than in the previous

studies. They have shown that the strongest predictor for

the number of friends is extroversion, while other
personality traits do not play a significant role. On

average, extreme extroverts tend to have twice as many

friends as extreme introverts. A subsequent work [42]

went one step further and, for the first time, quantitatively

explained the way in which egocentric network topology is

shaped by personality. It confirmed that extroversion plays

a major role by showing that introverts are part of fewer

but larger communities, whereas extroverts tend to act as
bridges between more frequent but smaller communities

(see Fig. 4).

V. FACEBOOK LIKES

The Facebook profile of a user is not purely demographic,
as it also contains robust records of digital footprints. In

particular, Facebook likes exemplify a typical variety of

digital footprintVa connection between the user and a

content that is similar to other pervasive records such as

playlists (see Fig. 5), website browsing logs, purchase

records, or web search queries. A recent paper [3] based

on the myPersonality database and using relatively

straightforward methods (singular value decomposition
and linear regression) showed that Facebook likes are

highly predictive of personality and number of other

psychodemographic traits, such as age, gender, intelli-

gence, political and religious views, and sexual orientation

(see Fig. 6). The paper provided examples of likes most

strongly associated with given personality traits. For

example, users who liked ‘‘Hello Kitty’’ brand tended to
Fig. 3. Words, phrases, and topics most distinguishing extroversion

from introversion. Source: [6].

Fig. 2. Personality maps of U.S. states for neuroticism (upper) and

extroversion (lower). Dark (light) blue indicates values higher (lower)

than average. Figure based on myPersonality data.

Fig. 4. Typical egocentric networks of introverts (left) and extroverts

(right). Introverts tend to belong to fewer but larger and denser

communities, while extroverts tend to act as bridges between more

frequent, smaller, and overlapping communities. Connections between

Ego and his friends have not been depicted for the sake of clarity.
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have high openness, low conscientiousness, and low

agreeableness.

VI. SEMANTIC ANALYSIS

Similar predictions can be based on the textual analysis of

people’s posts and other samples of text. There is a long

tradition in using text to infer personality [44], [45], [46],

however, never at the scale presented in [6]. This study
applied differential language analysis to uncover features

distinguishing demographic and psychological attributes to

700 million words, phrases, and topic instances collected

by myPersonality from Facebook status updates of 75 000

participants. It showed a striking variations of language

driven by personality, gender, and age. This work has not

only confirmed existing observations (such as neurotic

people’s tendency to use the word ‘‘depressed’’), but also
posed new hypotheses (such as a relationship between

physical activity and low neuroticism).

VII. . . . AND BACK FROM ONLINE TO
OFFLINE

The proliferation of mobile-devices loaded with sensors

means that offline human activities are also increasingly

leaving digital footprint [47], [48]. For instance, physical
states such as running or walking can be inferred from

accelerometer data; colocation with other devices can be

detected using Bluetooth; geolocation can be established

using WiFi, Global Positioning System (GPS), or Global

System for Mobile (GSM) triangulation; and social

interactions can be measured by records of text messages

and phone calls. These data can be recorded by dedicated

apps, such as EmotionSense [49], which measures
emotional states based on the speech patterns and matches

it with physical activity, geolocation, and colocation with

other users. In the last few years, call data records (CDRs)

have been used to study the organization of social networks

and human mobility [50], [51], [52].

Similarly to digital footprints left in the online

environment, offline activities recorded with mobile

devices’ sensors reflect users’ personality. A recent study
combined CDRs with personality profiles of mobile device

users and identified a number of mobility and social factors

correlated with personality [53]. For instance, mobility

indicators, such as distance traveled, significantly correlate

with neuroticism, while social life indicators, such as the

size of the social network, correlated with extroversion, in

agreement with the previous results based on online digital

footprints.

Fig. 6. Prediction accuracy of regression for numeric attributes and

traits expressed by the Pearson correlation coefficient between

predicted and actual attribute values; all correlations are significant at

the p G 0:001 level. The red outline bars indicate the questionnaire’s

baseline accuracy, expressed in terms of test-retest reliability.

Source: [3].

Fig. 5. Dendrogram illustrating the structure of music tastes and its

relationship to the personality trait of openness among myPersonality

users. The structure was produced using hierarchical clustering of

the most popular Facebook likes from musician/band category. The

color scale represents the average openness of its subscribers, ranging

from conservative (cyan) to liberal (magenta). The height of the

nodes is proportional to the dissimilarity between individual likes or

clusters at both ends. The shorter is the path between two musicians or

bands, the larger overlap in audience. Source: [43].
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VIII. CONCLUSION

The main purpose of this paper was to review the evidence

of the relationship between digital footprint and person-
ality. We have shown that a wide range of pervasive and

often publicly available digital footprints such as Facebook

profiles or data from mobile devices can be used to infer

personality. As our life is increasingly interwoven with

digital services and devices, it is becoming critical to

understand the consequences of the apparent ability to

automatically and rapidly assess people’s psychological

traits.
Works cited in this paper indicate that the accuracy of

the personality predictions is moderate, with typical

correlation between the prediction and personality in the

range of r ¼ 0:2 and r ¼ 0:4. It has to be noted, however,

that the ground truth (i.e., personality scores) is also

merely an approximation of the underlying latent traits. For

example, the accuracy of the personality scales used in [3]

expressed as a correlation between scores achieved by the
same person in two points of time (test-retest reliability)

ranged between r ¼ 0:55 and r ¼ 0:75. It is reasonable to

expect that with, an increasing amount of data available and

improved methods, assessment accuracy will improve.

Predicting users’ personality can be used to improve

numerous products and services. Digital systems and

devices (such as online stores or cars) could be designed to

adjust their behavior to best fit their users’ inferred profiles
[54]. For example, a car could adjust the parameters of the

engine and the music to the personality and current mood

of the driver. Also, the relevance of marketing and product

recommendations could be improved by adding psycho-

logical dimensions to current user models. For example,

online insurance advertisements might emphasize security
when facing emotionally unstable (neurotic) users but

stress potential threats when dealing with emotionally

stable ones. Moreover, digital footprint may provide a

convenient and reliable way to measure psychological

traits at a low cost. Such automated assessment could

prove to be more accurate and less prone to cheating and

misrepresentation than traditional questionnaires.

Furthermore, it is likely that new insights into

individual differences in human behavior offered by big

social data will fuel the emergence of new, more accurate,

robust models describing individuals and societies [5]. The

translation of big social data into models and policies calls

for a new wave of multidisciplinary collaborations between

fields as diverse as psychology, social sciences, linguistics,

computer science, and applied mathematics (perhaps

under the banner of computational social psychology).

On the other hand, the results presented here may

have considerable negative implications because it can

easily be applied to large numbers of people without

obtaining their individual consent and without them

noticing. Commercial companies, governmental institu-

tions, or even one’s Facebook friends could use software

to infer personality (and other attributes, such as

intelligence or sexual orientation) that an individual

may not have intended to share. There is a risk that the

growing awareness of such digital exposure may decrease

their trust in digital technologies, or even completely

deter them from them. We hope that researchers, policy

makers, and customers will find solutions to address those

challenges and retain the balance between the promises

and perils of the Digital Age. h
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INV ITED
P A P E R

Design of Randomized
Experiments in Networks
This paper presents novel networked treatment designs and discusses their potential

for future research.

By Dylan Walker and Lev Muchnik

ABSTRACT | Over the last decade, the emergence of pervasive

online and digitally enabled environments has created a rich

source of detailed data on human behavior. Yet, the promise of

big data has recently come under fire for its inability to

separate correlation from causationVto derive actionable

insights and yield effective policies. Fortunately, the same

online platforms on which we interact on a day-to-day basis

permit experimentation at large scales, ushering in a new

movement toward big experiments. Randomized controlled

trials are the heart of the scientific method and when designed

correctly provide clean causal inferences that are robust and

reproducible. However, the realization that our world is highly

connected and that behavioral and economic outcomes at the

individual and population level depend upon this connectivity

challenges the very principles of experimental design. The

proper design and analysis of experiments in networks is,

therefore, critically important. In this work, we categorize and

review the emerging strategies to design and analyze experi-

ments in networks and discuss their strengths and weaknesses.

KEYWORDS | Behavioral science; general; science; sociology;
systems, man, and cybernetics

As our day-to-day activities become increasingly embed-

ded in online and digitally enabled environments, the

availability of massive scale yet highly granular data on

individuals and social interaction enables new avenues of
scientific discovery. The promise of big data [1], [2] seems

immenseVnot just for its scale and scope, but perhaps

more importantly because highly detailed individual-level

data at scale suggest tailored policies that resist reversion

to the mean in domains ranging from medicine and public

health [3]–[5] to politics, web search [6], business [7],
e-commerce [8], and product design [9]. Yet, the promise

of big data has recently come under fire for its inability to

separate correlation from causationVto derive actionable

insights and yield effective policies [10], [11]. This

criticism unveils the perhaps lesser known but burgeoning

movement of big experiments that is rapidly gaining

traction within both academic research and industry

practice. The gold standard of causal inference through
experimentation is well established in both public and

private sectors [12]–[14]. Yet, the realization that our

world is highly connected and that behavioral and

economic outcomes at the individual and population level

depend upon this connectivity challenges the principles of

experimental design that lie at the very heart of the

scientific process.

Traditional experimental designs that randomly
assign populations to control and treatment groups to

measure the comparative outcome of a treatment do not

account for the networked environment in which we

liveVthe natural connections between subjects in these

populations. When the impact of treatment can propa-

gate along these connections, the traditional notions of

experimental design break down. It is perhaps not

surprising that this realization has chiefly emerged from
the blossoming interdisciplinary field of computational

social science [15], where the focus of study is on social

behaviors that are, by their nature, interactive. Yet the

implications of connectivity on experimental design are

far reaching and necessarily affect scientific inquiry in

multiple domains, including medicine, public health,

media, politics, business, biology, epidemiology, sociol-

ogy, and many others.
However, the natural connectivity of our world does

not only present a challenge to the conventional paradigm

of experimental design, but also reveals opportunities to
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leverage connectivity through the creation of novel
treatments that incorporate both experimental subjects

and the connections between them. Done correctly,

networked treatments can allow us to understand the

basic dynamics of contagious phenomena that have been

found to play a critical role in individual and population

level outcomes, such as: the effect of dosage or multiple

exposures on individuals and populations [16]–[19], the

decay of spreading behavioral and economic outcomes
across social distances [20], and the impact of heteroge-

neity in individual and relationship characteristics on

spreading [21]–[28]. In turn, such an understanding will

allow us to assess and compare policies designed to

promote positive contagions and contain or discourage

negative contagions.

In this work, we consider several aspects of networked

randomized trial design from the perspective of the
experimental setting, the process being studied, and the

impact of connectivity. We further address emerging

methods to analyze and draw statistical inferences from

networked randomized trials. Finally, we present several

categories of novel networked treatment designs and

discuss their potential to future research.

I . THE IMPACT OF SETTING AND
PROCESS ON NETWORKED
RANDOMIZED TRIAL DESIGN

Over the past several years, the use of randomized

controlled trials in networked environments has increas-

ingly been employed by researchers across a variety of

disciplines. Though these works share in common the

feature of highly interconnected environments in which
they take place, they differ significantly in both intent and

approach. Networked randomized controlled trials

(NRCTs) can be classified along two dimensions: the

setting in which they are conducted and the process they

are designed to investigate. First, we consider the setting

in which an NRCT is conducted, which has a number of

implications on aspects of experimental design, relation-

ship to the networked environment, and on interpretabil-
ity or generalizability of findings.

A. Setting
There are three primary settings in which NRCTs can

be conducted: offline laboratories, online laboratories, and

field experiments in real-world settings (often referred to

as experiments ‘‘in the wild’’). The main differences

between these settings are: the extent to which the
experimenter can control her subjects and the context, the

extent to which subjects are aware that they are

participating in an experiment, whether networked

environments are artificially imposed or organic, the

potential scale of the experiment (in terms of population

size and experiment duration), the ability to run repeated

experiments, the ability to recruit and maintain subject

participation, and the amount and type of information on
subjects that is available for posterior analysis.

Offline laboratory settings have traditionally been used

in the fields of psychology, economics, and sociology [29],

[30]. In this setting, participants are typically recruited,

invited into a highly controlled physical environment, and

given instructions on how to participate across multiple

phases of the experiment according to well-established

protocols. Offline lab settings offer the advantages of strict
experimenter controls (over the conditions of the

environment itself, constraints on subject behavior, and

the nature of subject interactions and information flow).

For example, experimental subjects can be deliberately

primed, exposed to controlled situations, given back-

ground, and even instructed to act or interact with one

another in a particular manner. The advantage of strict

control, however, is often accompanied by the important
tradeoff that subjects are explicitly and constantly aware of

their role as experiment participants, and this awareness

may cause them to act, react, and interact differently from

their natural behavior in organic environments and in

cases where they do not believe their behavior is being

observed and assessed. This limitation may have important

implications on the generalizability and applicability of

findings to policy considerations [31]. Beyond aspects of
control, subject recruitment is often limited by proximity

to the lab, time availability, and effectiveness of recruit-

ment incentives. The limitations of subject recruitment

have two important implications: First, it constrains the

demographics of experimental populations (and thereby

the generalizability of findings) and second, the overall

population size and duration of the experiment. In

addition, the research questions that can be addressed by
the experiment are frequently limited by the premises at

which it is set. Offline lab settings also have advantages

and disadvantages with regard to the networked environ-

ment itself. In these settings, researchers may completely

specify network connections between subjects and control

communication or other forms of interaction along these

links. However, networks imposed by researchers may be

very different in structure from organic networks, and
artificially imposed network links may lack real social

context, potentially making them a poor proxy for the real

social environments they may intend to represent. These

conditions facilitate investigation of well-defined situations,

such as a collaborative solution to the network coloring

problem [32], [33], convergence to consensus through biased

voting [34], or the impact of network structure on the

performance of prediction markets [35], [36].
Online laboratory settings are relatively recent and

primarily facilitated by the pervasiveness of online

technologies and the emergence of online social network

platforms and microlabor markets (such as Amazon’s

Mechanical Turk [37]). These settings replicate the spirit

of the offline lab in that subjects are explicitly aware that

they are participating in an experiment, may be primed,

Walker and Muchnik: Design of Randomized Experiments in Networks

Vol. 102, No. 12, December 2014 | Proceedings of the IEEE 1941



given background information, and requested to act or
interact with one another in a particular manner. To some

extent, online lab settings reduce constraints on experi-

mental scale and subject recruitment in terms of

geographic proximity and duration of participation.

Importantly, unlike their offline counterparts, online lab

settings can leverage existing platforms to enable subject

recruitment at significantly reduced costs [38], [39] and

thus have the potential to enable experimentation at much
larger scales, though, like their offline counterparts, online

lab settings may also suffer from concerns of generaliz-

ability arising from the makeup of microlabor markets

employed for subject recruitment [40]. In addition, these

settings can also leverage the application programming

interface (API) of existing platforms or data sharing

agreements with their operators to collect detailed

information about subjects, their social network connec-
tions, and to control or mediate subject interactions [41]–

[44]. However, these environments necessarily sacrifice

strict experimental control in terms of the conditions of

the offline environment itself, constraints on subject

behavior, and the nature of subjects (potentially unre-

corded) offline and online actions and interactions, as well

as information flow to and (in some cases) between

subjects. Experiments in online lab settings also face a
number of new challenges such as maintenance of subject

participation (e.g., user churn) and concurrency of subject

participation (i.e., experiment design may require simul-

taneous presence of the subjects)1 [40]. As in the case of

offline labs, the findings and inferences from experiments

conducted in online lab settings may have limited

applicability to real-world environments because individ-

ual behavior may be affected by the knowledge that
subjects are part of an experiment and are being observed.

Unlike offline lab settings, online labs that leverage

existing social network platforms permit experiments in

real networked environment while exerting some degree

of control of interactions and information flow along

network links (e.g., [44]). Thus, online lab settings

circumvent some limitations of their offline counterparts

making them uniquely suited to address well-defined
situations such as the role of network in cooperation [39],

[45], public goods [39], and investment games [44] as well

as its impact on health behavior [41]–[43].

In contrast to offline and online labs, field experiments

in real-world settings do not exert strong controls over

subjects’ environments, but instead assess the impact of

randomized assignment directly in the natural environ-

ment of the system being studied [46]. Online field
experiments in particular can provide researchers with

detailed data on subject behavior (online and even

offline)2 that is not biased by knowledge of participation

in the experiment3 and can be conducted at extraordinarily
large scales and over arbitrarily long durations. In some

sense, online field experiments are a natural extension of

A/B testing procedures that have become part of the

standard policy for large online platforms to assess and

evaluate features or the impact of platform design

elements on the overall user experience [13], [47]–[49].

Because these settings facilitate experiments that can be

conducted without or with limited subject knowledge, care
must be taken to assess the ethical considerations of these

practices and to abide by the standards of practice

governing human subjects research. This concern tends

to be more central to experiments addressing fundamental

social science or economics research questions than in the

case of routine A/B testing. Controversy surrounding

recent research employing an online field experiment to

study emotional contagion on Facebook emphasizes these
concerns [50], [51]. In addition, researchers that conduct

experiments in real-world networked environments with

treatment impacts that can propagate should also consider

the ethical implications of treatment impact on individuals

outside the experimental population. It should be noted

that despite the necessity for strong ethics, field experi-

ments in real-world settings provide strong inferences and

insights directly applicable to real-world systems and thus
play a critical role in assessing the potential efficacy of

important social and economic policies. Additional aspects

of design of field experiments in natural settings relate to

the concerns that the desired interventions should appear

to be organic, in some cases not clearly detectable between

subjects, and generally should not observably interfere

with the normal operation of the community, platform, or

online system. These concerns are important for rigorous
experimental design but also to assure that experimental

interventions do not adversely affect the business of firms

that collaborate with researchers. Like online lab settings,

online field experiments are limited by the capacity for

experimenters to design interventions or otherwise control

the environment. For example, it may be more difficult to

expose subjects to a desired intervention, and other

experimental controls may be limited by the features of
the online platform or system. In many cases, field

experiments identify effects of specific platform features,

such as the impact of (in)visibility of user activity on peer

interactions on an online dating site [52], the impact of

social cues in word-of-mouth advertising on ad perfor-

mance [53], the role of social platforms in diffusion of

information [54], the study of the mechanism of coupon

sharing on Facebook [55], and the value of the content
author’s identity in evaluation of that content by the

reader on news aggregation websites [56]. Besides the

advantage of conducting the experiment in organic

1See, for example, the sections on dropouts and the waiting room
in [39].

2For example, many online platforms are location aware.

3In many cases, experiments conducted in natural settings may notify
subjects indirectly through posted policies on user research in the
platform or online site’s terms of use.
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settings and thus observing natural behavior, real-world
settings often enable research at immense scale, facilitating

observation of subtle effects or heterogeneous response to

interventions.

Finally, while not the focus of this work, the

occurrence of natural experiments arising from exogenous

variation in real-world systems provides yet another

setting in which researchers may pursue causal inference.

Unlike formal experiments which require significant
investments of time and resources from experimenters,

occasionally induce ethical concerns, and may noticeably

interfere with user experience, the potentially wide-

spread occurrence of natural experiments may permit

causal inference on observational data at large scales and

may be used prior to experimentation to inform

experiment design. Having discussed the implications of

setting on the design of NRCTs we now turn to a
discussion of the process that NRCTs are designed to

investigate.

B. Classification by Process
Experiments in networked environments can also be

classified by the process they are designed to investigate,

including the exploration of social and economic beha-
viors, the underlying dynamic microscopic and macro-

scopic mechanisms governing these behaviors, and the

resulting dynamics of outcomes at individual, group, and

population levels. Many NRCTs focus on investigation of

propagation processes such as dissemination of innovation,

spread of information and behaviors, or adoption of new

products. Identification of factors affecting these processes

is vital for informing managerial or public policies
intended to promote or discourage population-level out-

comes. Factors that affect process dynamics include initial

conditions (such as targeting or seeding); dosage and

temporal aspects (such as the extent and timing of multiple

exposures); the willingness of subjects to contribute,

prevent, or direct the viral spread; the susceptibility of

subjects to peer influence, the social network topology;

and modification of the process itself (e.g., viral product
design [22]) In practice, policies may need to leverage

one or more of these mechanisms to achieve a desired

outcome [57].

The process under investigation is often signified by

how the experimenter measures the response to their

intervention. When the effect of intervention(s) can

propagate, the experimenter is not limited to analyzing

the response behavior of directly treated subjects, but may
instead focus on the response behavior of other subjects or

groups in the population (such as peers of directly treated

subjects or groups of locally connected treated subjects).

Analysis may therefore focus on one of three aspects: the

direct effect of the treatment on the treated (ETT)

subjects, the effect of the treatment on the cotreated

(ETC), or the effect of the treatment on the untreated

(ETU).4 To avoid ambiguity, we adopt a simple definition
of treatment that is defined for each experimental subject

as the alteration of that subject’s experimentally controlled

experience. We leave discussion of more complex

networked treatments not covered by this definition to

Section III. The effect of treatment may be measured at the

level of individual subjects, aggregated over groups of

subjects, or aggregated effects of the treatment on the

population at large. In addition, researchers may be
interested in how the effect is moderated by individual

attributes, local-network attributes, or the global structure

of the network. In this section, we categorize existing

research by process and discuss the implications on

experimental design and choice of setting.

Networked experiments that study processes

concerned with the effect of treatment on the treated

(ETT) represent the extension of conventional nonnet-
worked experiments to networked environments. It is

important to note that for many processes of interest

(particularly those that involve social components) tradi-

tional experimentation may be affected by an underlying

network, even when the network is not explicitly observed

or recognized by experimenters. In some cases, interaction

between subjects may be an unavoidable nuisance, while

in other cases, it may be central to the process under
investigation. For example, Bapna et al. [52] study the

impact of enabling anonymous profile viewing for users of

an online dating site, an intervention that is meaningless in

the absence of social interaction. In another experiment

Bakshy et al. [53] vary the number and the intensity of

social cues accompanying online ads to establish the

degree to which they can affect the ad performance. One

distinct class of research questions that focus on ETT
addresses subjects’ response to population level social

signals such as conformation to peer pressure. First

identified with the now classical sociologist techniques

in lab or small-scale field experiments conducted in the

1950s and 1960s by Asch [58] and Milgram et al. [59],

these phenomena can now be examined at scale. For

example, in a sequence of experiments, Salganik et al. [38],

[60] study the impact of popularity-based content ordering
on the propensity to consume cultural products (music). In

these experiments, the authors randomize perceived

popularity of songs to distinguish the impact of popularity

on subjects’ decisions to consume music from that of song

quality. The rising prevalence of ranking and rating

mechanisms in virtually every domain makes these types

of experiments both theoretically and practically impor-

tant. The sheer scale of the data can permit subtle
inferences that require high sensitivity and provide enough

4This terminology should not be confused with the traditional
terminology of the average treatment effect on the treated (ATET) and the
average treatment effect on the untreated (ATEU) which pertain to
analysis in nonnetworked environment to provide counterfactual
estimates that avoid selection bias in the designation of treated
populations.
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resolution to understand the moderating effect of different
personal and content attributes on consumption decisions.

Depending on the setting and control available to

experimenters, connectivity between subjects may allow

for undesirable spillover effects (interference) that con-

taminate or bias inferences on ETT. The potential scale

and the scope of networked experiments can facilitate

inferences on the ETT that emerge as a result of feedback

mechanisms (due to spillover effects). For example,
individuals subject to treatment can indirectly influence

others by contributing their manipulated opinion to

population-level social signals. Such spillover effects may

affect both untreated and treated subjects (through

feedback) resulting in herdlike phenomena that has the

potential to sway collective (population-level) behavior,

potentially in undesirable ways, leading to important

implications for rating, ranking, and collaborative feed-
back systems. This effect was demonstrated at scale by

Muchnik et al. [61] who show that minor manipulation of

the perceived scores of user-generated comments guided

consequent user votes and resulted in herding, signifi-

cantly affecting the content’s final score. Subsequent

research by Godinho de Matos et al. [62] found that

manipulation of rank and population-level social signals

for video-on-demand titles yields only a short-lived effect
on herding behaviors, emphasizing that such signals may

be highly context dependent. From the experiment design

perspective, the feedback following the randomized

manipulation of the content or its ranking may mingle

the treatment with endogenous processes. In fact, due to

the aggregation of the collective opinion into population

level social signals, all but the first impression following

the treatment are conditional on the response (or
nonresponse) of the preceding subjects. We discuss

detailed strategies to address the related interference

issues in Section II.

Networked experiments that study processes

concerned with the effect of treatment on the cotreated

(ETC) include processes that involve local network

externalities. Understanding such processes is central to

explaining the value of network goods, products, or
features and necessary for modeling of propagation of

knowledge, rumors, and information in general. The

recent emergence of pervasive online social platforms

enables experimentation on ETC-related processes that

can yield relevant insights of value to both platform owners

and academics. For example, recent work on network

bucket testing extends A/B testing procedures to assess the

ETC of social product features. Additionally, many
platform sponsors assess social features through beta

rollouts (e.g., Gmail) that allow users to invite their peers

to coadopt, making inferences on ETC of high practical

importance. For this reason, studies of ETC are often

conducted in real-world settings, though the available

controls of offline and online lab settings make them

equally suitable to study cotreatment.

Processes concerned with the effect of treatment on
the untreated (ETU) are the focus of the rapidly expanding

field of research into contagious phenomena across

multiple disciplines. Many recent randomized experi-

ments conducted in networks examine contagion process-

es in the context of diffusion of behaviors (e.g., voting [20]

or health behavior [41]), emotions [50], peer influence, or

product placement (seeding) [21], [63], [64], which aspire

to inform polices aimed at the promotion or containment
of contagions in social networks. These studies are

designed to identify the impact of a variety of factors on

contagious spreading. Several studies investigate the

moderating effect of individual characteristics [52],

dyadic properties [21], [53], [64] as well as the impact

of attributes of a spreading product, norm, or information

[20], [22], [50] on diffusion processes on networks.

Causal identification of factors that affect subject
behavior can be achieved through exogenous manipula-

tion of these factors, allowing researchers to distinguish

causal impact from alternative explanations of correlated

behavior such as homophily, assortative mixing, and

other endogenous confounds [65]–[67]. These experi-

ments are based on selective application of treatments to

focal subjects and observation of the response of their

immediate or remote peers. Typical treatments include
randomized gifting, variation of pricing, or manipulation

of product features. More sophisticated treatments focus

on randomly controlling the interaction between in-

dividuals and their peers, aiming to test how peer

influence is moderated by subject, peer and dyadic

characteristics. For example, Aral and Walker [64] test

the moderating effects of individual and dyadic char-

acteristics on word of mouth by issuing Facebook
notifications to randomly chosen peers of experimental

subjects. Such networked treatments go beyond the

definition of simple treatment that we have adopted

here. We discuss these types of treatments in more detail

in Section III. Other contagion experiments examine the

effect of local and large-scale network topology on

diffusion of information and behaviors [32]–[34], [39].

The general goal of these studies is to detect the effect of
network attributes (such as degree, clustering, assorta-

tivity) on network diffusion processes and the effect they

have on individual and collective behavior such as

convergence to consensus [34], [39], a collaborative

solution to network coloring problems [32], [33], and the

spread of health-related behaviors [41]–[43]. Experi-

ments on contagion processes may constrain the choice

of experimental setting. For instance, exogenous manip-
ulation of local or global social network structures

requires a setting where tight control over individuals’

connections is possible. Such control can be achieved in

offline or online laboratory settings where the experi-

menter has full control over connections and/or informa-

tion visibility, but may be less feasible in real-world settings

where connections emerge organically and cannot be
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exogenously manipulated5 [32]–[34], [39], [41], [42]. On
the other hand, studies that examine the (potentially

subtle) impact of individual attributes on contagions

typically require rich data sets at large scales that cover

the wide spectrum of attributes. Such studies are, therefore,

best suited to settings that enable large-scale experimenta-

tion where data is readily available, as is the case for real-

world field experiments conducted on online platforms.

II . IMPACT OF CONNECTIVITY ON
RANDOMIZED TRIAL DESIGN

The consequence of connectivity on inference in random-

ized trials is best understood by examining the Rubin

causal model, which presents a fundamental approach to

drawing causal statistical inferences from randomized

experiments. A chief assumption of this approach is the

stable unit treatment value assumption (SUTVA) which
demands that the observed outcome on one unit (subject)

should not depend upon treatment assignments to other

units (subjects) [68], [69]. When the effect of treatment

can propagate, this assumption is violated and the standard

machinery of statistical inference from randomized trials

must be reevaluated. In some cases, where propagation of

treatment effects is well understood, the SUTVA can be

reestablished by redefining treatment to multiple treat-
ment specifications that include indirect spillovers.

However, in the highly connected environments in which

we are interested (and particularly where the nature of

treatment propagation is unknown), simple respecification

of treatment to rescue the SUTVA is not feasible.

In recent work, Manski [70] has taken the first steps

toward building a theory of identification in the presence

of interference by extending the SUTVA from the classical
assumption of noninteracting units, which he refers to as

the assumption of individualistic treatment response

(ITR), to define multiple classes of assumptions based on

the nature of interaction (or lack of interaction) between

units. For example, he defines the assumption of constant

treatment response (CTR) as the case when each

individual in the experimental population has some

reference group (of other units or subjects) for which his
or her outcome remains constant when treatment varies

beyond his or her reference group. He further relates these

assumptions to models of endogenous interactions through

systems of simultaneous equations that connect treatment

and outcomes of all individuals in the population to the

outcome of any particular individual. These considerations

lead to restrictions on when inference from observed

outcomes can be point identified and, importantly, how
this relates to treatment designation.

Practical strategies to account for connectivity in
randomized trials are currently an active topic of research

and fall into two general categories: inference strategies

and design strategies [64]. The former strategies address

interference after an experiment has been conducted,

during the inference or analysis phase, while the latter

strategies address the potential for interference prior to

experimentation by modifying aspects of the design of

randomized trials, such as treatment assignment proce-
dures, to minimize interference.

To clarify our discussion of these strategies, we

introduce some terminology to describe treatment and

exposure to treatment. For the purposes of simplicity, we

assume for now that experimental treatments apply

directly to individuals (or units) in the population and

leave complex treatment types that may include simulta-

neous experimental controls on individuals, their peers,
and the nature of their interaction(s), for subsequent

discussion. We also assume, for simplicity of discussion,

that treatments are temporally static, assigned prior to the

experimental period and consist of only one kind of

treatment (i.e., treatment or control; though these

definitions may easily be extended to the case of multiple

treatment types). We define direct treatment as the

alteration of each individual’s experimentally controlled
experience throughout the course of the experiment, as

specified by the direct treatment vector Tdir
i , where i

indexes experimental subjects. This follows the conven-

tional usage of the term ‘‘treatment’’ in traditional RCTs,

and its assignment is directly controlled by the experi-

menter. In contrast to direct treatment, we define indirect

treatment as the experience induced on peers of directly

treated users (through their direct connection or through
one or more pathways of multiple connections in the

network) as a consequence of direct treatment, as specified

by the indirect treatment vector Tind
ik . Unlike direct

treatment, indirect treatment is not exogenously assigned,

but arises instead from both direct assignment, the (often

endogenous) network itself, and the (often endogenous

and unknown) dynamics of propagation of the impact of

direct treatment. The subscript k is included to enumerate
the multiple types of indirect treatment that arise through

exposure even given our assumption of one kind of direct

treatment. For example, one type of indirect treatment

may be defined as having one and only one treated

neighbor (regardless of treatment assignments at larger

network distances from the subject); another type may be

defined as having two treated neighbors who are not

connected to one another (regardless of treatment assign-
ments at larger network distances from the subject). As

these examples suggest, the multiplicity of indirect

treatment types depends on assumptions about exposure

and propagation. As a consequence, indirect treatment

may also be time dependent. For completeness, we also

define the total effective treatment as the combination of

both direct and indirect treatment Ttot
k .

5We note that online lab settings and real-world online settings that
utilize platform features may effectively alter network structures
exogenously by disabling certain types of interactions, rendering these
settings suitable for studies aimed at inferring the impact of local or global
network structures on contagion dynamics.
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A. Inference Strategies
Inference strategies attempt to remove or reduce bias

and/or variance from estimates that identify the impact of

treatment in connected settings and typically assume a

specified vector of treatments. Inference strategies are

distinguished by the type of estimation strategy, from the

fundamental estimate of the average impact of treatment

to more sophisticated modeling techniques.

In some recent work, researchers have developed
methodologies to partially account for statistical interfer-

ence in NRCTs through modified average treatment effect

(ATE) estimators with reduced bias [71], [72]. In these

methodologies, an exposure model is assumed and

employed to enumerate multiple total treatment types,

Ttot
ik . A modified Horvitz–Thompson or Hajek estimator is

then constructed to account for the bias introduced by the

propensity to receive any of the total effective treatment
types. The multiplicity of the total effective treatments is

determined by assumptions of the exposure model. For

example, for an exposure model that assumes propagation

to fall to zero beyond one network link, all individuals with

no treated neighbors will have a total effective treatment

equal to their direct treatment, regardless of the treatment

status of peers at network distance greater than one.

However, it is clear that for arbitrary exposure models
(where the propagation of the treatment effect may not fall

sharply with increasing network distance), estimating the

causal impact of the treatment becomes severely limited,

as the number of potential indirect treatments ðKÞ
becomes increasingly large relative to the size of the

experimental population. Coppock and Sircar summarize

this difficulty succinctly:

‘‘The basic difficulty inherent in design of

experiments facing interference between units is

that it reduces power. If units are exposed to

complex spillovers, the outcomes revealed by those

units are not useful for the estimation of any

quantities of interest’’ [73].

Nonetheless, modified estimator approaches may be
particularly fruitful when strong assumptions of limited

propagation apply or when the experimenter can exert

strict control over propagation. However, when knowledge

of the propagation (and hence exposure) is unknown,

practitioners must turn to empirical evidence to first

adjudicate between multiple potential exposure models. It

is important to note that the statistical interference

methods discussed above are not designed to discriminate
between different exposure models. This highlights a

critical challenge in analysis of networked experimenta-

tion in novel contexts: researchers must simultaneously

estimate both the treatment impact and the nature of

exposure dynamics.

Other inference strategies go beyond modification of

estimates of the ATE impact and incorporate constraints

on inference in more sophisticated approaches to model
treatment impact. Modeling in NRCTs has three primary

advantages over ATE estimation. First, use of models that

incorporate interactions of characteristics or attributes

with both direct and indirect treatments allow inferences

surrounding the heterogeneity of treatment impact. Such

inference can be used to understand and predict how

different subpopulations would respond to treatment.6

This is particularly important from the standpoint of
personalized policy development. While true assessment

of the efficacy of personalized policies should be verified

by evaluating interventions specifically designed to affect

targeted subpopulations, inferences on heterogeneous

treatment impact can act as a guide to develop personal-

ized policies by identifying subpopulations (from the wide

range of possibilities) for which treatment impacts

significantly differ. Second, modeling permits identifica-
tion of moderators of treatment impact ceteris paribus,

allowing researchers to partially disentangle the treatment

impact of correlated characteristics, provided there is

significant diversity in subject populations. Third, model-

ing strategies allow researchers to employ tools such as

censoring, stratification, and matching to estimate the

impact of indirect treatment on individuals who have

received different exposures relative to those in appropri-
ate reference groups that have not. In models that employ

duration analysis, censoring techniques can be used to

censor outcomes of users only after they are exposed to

complex indirect exposures. This technique allows re-

searchers to reduce bias in estimates of treatment impact

while both retaining the maximal amount of outcome data

in their analysis and correctly parameterizing their

ignorance regarding what might have happened had
complex indirect exposure not occurred. For example,

Aral and Walker [22] employ censoring in hazard models

to exclude subject outcomes from analysis only after they

have been indirectly exposed to multiple treated peers

(with potentially different treatments). Unlike the mod-

ifications to ATE estimators discussed above, censoring

techniques do not require complete specification of an

exposure model, but instead assert limiting assumptions
regarding exposure in exchange for both a loss of statistical

power for censored observations and the inability to

estimate the impact of some complex exposures. This is an

important tradeoff. Stratification (in nonduration model-

ing) and dynamic risk group assignment (in duration

modeling) further allow researchers to partition subjects

according to different indirect exposures they may have

received and separately estimate the impact of these
indirect exposure on subject outcomes. Stratification on

indirect exposure types is also subject to assumptions

regarding the nature of exposure (as indirect exposure

6Recent work on analyzing heterogeneous treatment effects with
dependent data provide a variety of bootstrap methods to properly handle
uncertainty [85].
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types must be specified prior to stratification), but also
does not require a complete specification of the exposure

model. Instead, complex exposure types excluded from any

strata or risk group are effectively censored (in duration

models) or truncated (in nonduration models), sharing the

associated tradeoffs with censoring discussed above.

Importantly, because indirect exposure is endogenously

determined (by the natural connectivity of the network

and in some NRCTs potentially also by endogenous
propagation of the treatment), concerns of generalizability

apply. Specifically, populations receiving different types of

indirect exposure to treatment may be fundamentally

different (in terms of observable and unobservable/latent

characteristics) from the representative population at

large. Researchers employing these techniques should,

therefore, take care in generalizing inferences on the

impact of complex indirect exposures to situations that
would not arise organically (such as policies that

exogenously determine complex indirect exposures).

Matching techniques generally may be employed to

establish appropriate reference groups and specifically to

control for the propensity to receiving a particular type of

indirect exposure to treatment and to balance the makeup

of direct or indirectly treated populations relative to

controls. Matching on propensity to receive a type of
indirect treatment is comparable to the modifications to

ATE estimators discussed above, but matching techniques

can be generalized to simultaneously account for both

propensity to be exposed and endogenous variations in the

makeup of subpopulations that receive different types of

direct and indirect exposure. It is important to note that

relative to fundamental ATE approaches, modeling

approaches may often involve strong assumptions regard-
ing the mechanism of treatment response. For this reason,

researchers must establish that these assumptions are

theoretically grounded and reasonable through empirical

validation and ensure that the robustness of inferences to

model specification is thoroughly explored.

B. Design Strategies
In contrast to inference strategies, design strategies

alter aspects of the design of the experiment itself in order

to constrain the manner of interference between subjects.

Typically design strategies involve rearranging assignment

of treatment to subjects in a manner that incorporates

information on network connectivity. Existing design

strategies fall into two categories: treatment clustering

strategies and treatment separating strategies. Treatment

clustering strategies seek to closely approximate the
counterfactual conditions in which the entire network is

exposed to either treatment or control by assigning

subjects in well-defined local subnetworks the same

treatment. In contrast, treatment separating strategies

seek to assign treatments to experimental subjects that are

well separated from one another in network distance in

order to minimize interference. Existing design strategies

to deal with interference also differ by whether they are
appropriate for making unbiased inferences on the effect

of treatment on the treated (ETT), cotreated (ETC), or

untreated (ETU) members of the populations and the

extent to which they are suitable for empirically inferring

(rather than assuming) exposure dynamics.

Treatment clustering strategies relate treatment desig-

nation to the natural structure of the network in terms of

clusters, components, and communities.7 These strategies
stem from attempts to extend A/B testing to networked

environments where treatment is oriented around en-

abling new features or products in social network plat-

forms that exhibit strong local network externalities. For

example, the evaluation of a new social messaging feature

would be inaccurate if the feature was not simultaneously

available to individuals and their direct network peers with

whom they would typically communicate. Treatment
clustering strategies use (a variety of) algorithms to assign

the same treatment to clusters of well-connected nodes

[17], [74]. Ugander et al. [75] use the terminology

‘‘network exposed’’ to describe the condition under which

an individual and some sufficient number or fraction of his

or her peers have received the same (direct) experimental

treatment. They show that, using their technique of graph

cluster randomization, an efficient dynamic program can
be used to exactly calculate the probability that each

individual in the network is network exposed. When an

exposure model is specified, these probabilities can be

used in modified ATE estimators to reduce bias. Moreover,

they also show that under the right conditions, graph

cluster randomization can significantly reduce ATE

estimator variance. Airoldi et al. [76] also consider a

simple sequential randomization algorithm that clusters
direct treatments in local networks as well as an insulated

neighbor randomization algorithm that relaxes treatment

conditions to partial neighborhoods to yield a higher

probability of valid causal estimates where treatments are

matched with counterfactual controls. In subsequent

work, Eckles et al. [72] point out that many tractable

exposure models do not realistically account for the role of

peer effects in mediating exposure. Instead, they consider
dynamic outcome generating processes in discrete time for

which a subject’s response at time t depends upon their

own direct treatment, as well as the direct treatment and

behavior of their peers at time t� 1. Outcome generating

processes go beyond specification of exposure alone and

specify a mechanism by which responses are induced by

direct and indirect treatments. They employ graph cluster

randomization on several artificial models of networks
assuming fractional neighborhood treatment response

7Clusters are subgraphs into which an overall network is partitioned
according to some clustering rule. Components are sets of nodes that are
connected to one another via network paths of any length. Communities
in networks are defined as sets of nodes which are well connected to one
another and relatively sparsely connected to other nodes in the
population.
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(FNTR) in which a subject is assigned the treatment
condition of a specified fraction of their peers. Subjects

without a sufficient fraction of peers assigned to treatment

or control conditions are excluded from analysis. Using

simulations of outcome generating processes on artificial

network models, they show that in the presence of peer

effects that mediate exposure, graph clustering randomi-

zation can reduce bias in modified ATE estimators with

comparably small increases in estimator variance when the
network itself exhibits sufficient clustering. Thomas and

Finegold [77] employ a form of indirect treatment

clustering. They consider random treatment assignment

and use a pseudorandomized trial (where mock treatment

designation does not alter user experience whatsoever) to

demonstrate that simple t-tests on the impact of indirect

treatment (ETU) spuriously bias p-values toward zero.

They implicitly assume that exposure does not extend
beyond a network distance of one and consider permuting

direct treatment assignment so that all peers of directly

treated subjects have the same unequivocal indirect

treatment designation. They show that clustering of

indirect treatments restores uniform p-value distributions

for t-tests on the impact of indirect treatment, as would be

expected given the mock nature of the treatment. As the

above discussion should make clear, treatment clustering
strategies can reduce bias and variance in inferences on

ETC. However, these strategies necessarily reduce hetero-

geneity in types of indirect exposure, making them less

suitable for inferences on the effect of the treatment on the

untreated (ETU), including the ability to empirically

evaluate the dynamics of contagious phenomena, such as

how multiple indirect exposures add together or how

exposure decays over social distance. In some cases,
indirect treatment clustering strategies may be appropriate

for inferring the effect of treatment on the untreated

(ETU), when exposure does not extend beyond a network

distance of one. Importantly, treatment clustering strate-

gies may yield unbalanced assignment of nodes to

treatment conditions in terms of individual-level or

network characteristics of subjects (such as degree).

Specifically, Ugander et al. [75] point out that subjects
with high network degree are less likely to be assigned to

extreme definitions of cotreatment (e.g., an effective

treatment where most or all of a subject’s peers have the

same treatment). Likewise, Thomas and Finegold [77],

who primarily focus on the impact of indirect treatment,

discuss concerns of selection bias for indirectly treated

subjects in terms of bias in the distributions of individual

characteristics (that may arise from, for example,
homophily), and network characteristics (such as degree),

that arise as a consequence of designating treatment

either randomly or with treatment clustering strategies.

While reweighting designation of direct treatment can

alleviate selection bias on indirectly treated subpopula-

tions, it necessarily induces selection bias in the directly

treated subpopulations, as they point out. One promising

approach to address concerns of balance is presented in
the recent work by Nishimura and Ugander [78] on graph

partitioning.

Treatment separating strategies attempt to reduce

interference between subjects by constraining direct

treatment assignment to subjects that are well separated

from one another. Coppock and Sircar [73] define the

SUTVA degree ð�Þ as the network distance beyond which

spillover does not occur.8 In this methodology, well-
defined direct and indirect treatment types on which the

experimenter would like to make inferences are specified

in advance and all other (complex) exposures to treatment

are minimized through a two-stage random direct treat-

ment assignment algorithm that incorporates the assump-

tion of the SUTVA degree. Modifications of the direct

treatment assignment algorithm can be performed to

permit inferences on the dynamics of contagious phenom-
ena such as how indirect exposures to treatment add

together or decay over social network distance. Analysis

procedures may also employ modified estimators or other

modeling techniques that adjust for the propensity to

receive an indirect treatment. Consequently, treatment

separating strategies are ideal for estimating the effect of

the treatment on the untreated (ETU). Because this

strategy primarily seeks to separate treated subjects from
one another in network distance, it is less appropriate for

inferring the effect of the treatment on the cotreated

(ETC) when a substantial number of cotreatments among

directly connected individuals is desired. It is important to

note that the assumption of a SUTVA degree excludes

cases when maximal spillover distance can depend on the

number of indirect exposures. For example, in complex

contagion scenarios, a subject may be more likely to be
affected by multiple directly treated peers at distance

�þ 1 than by a single peer at the same distance. Post hoc
inferences on how exposure adds and decays over social

network distance (within the SUTVA distance) obtained

from treatment separating approaches can be examined to

evaluate whether this is a concern. Practitioners may wish

to modify the direct treatment assignment algorithm to

reduce multiple exposures at the cost of reducing treated
population sizes and statistical power. Just as treatment

clustering schemes may induce selection bias in individual-

level or network-level characteristics of directly or

indirectly treated populations, as a consequence of

clustering, treatment separating schemes may also induce

a similar selection bias. The algorithmic removal of

subjects within a distance � from treated and indirectly

treated subjects from consideration to receive a direct
treatment could impact the balance of treated and

indirectly treated subpopulations in terms of individual-

and network-level characteristics. The presence of

homophily on individual-level characteristics in a variety

8The definition of SUTVA distance is closely related to the concept of
r-nets in metric spaces, which is discussed by Ugander et al. [75].
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of real-world networks emphasizes this concern. As such,
care should be taken to ensure that directly and indirectly

treated subpopulations are balanced with respect to one

another and any reference groups. When this is not the

case, the two-stage random direct treatment assignment

algorithm can be modified to reassert balance.

Interestingly, both treatment clustering and treatment

separating strategies require assumptions about exposure

distance introduced through the choice of the cluster size
in the former case, or through the specification of SUTVA

degree in the latter case. When empirical evidence is

unavailable to inform these decisions, practitioners may

employ combinatorial designs to vary cluster sizes in

treatment clustering strategies or to empirically infer

decay of exposure across social distance in treatment

separating strategies. In many circumstances, quasi-

experiments that apply matching to observational data
may act as a useful guide to inform experimental design

surrounding exposure assumptions and the requisite

statistical power necessary to infer significant effects

[63], [66], [79]. In addition, both treatment clustering and

treatment separating strategies assume that the network

structure is known. While unbiased sampling can be

achieved through a variety of means, e.g., [80] and [81], it

may not always be feasible. When only partial information
on network structure is available, adaption of the strategies

presented here in combination with network sampling

techniques may be required. This is another avenue for

potential future research.

III . NETWORKED TREATMENTS

The natural connectivity of our world does not only
present a challenge to the conventional paradigm of

experimental design, but also reveals opportunities to

leverage connectivity through the creation of novel

treatment mechanisms that incorporate both experimental

subjects and the connections between them. Where simple

treatments are defined as those that are applied to and

alter an individual subject’s experience, networked treat-

ments involve interventions that may alter how connected
subjects interact with one another, encourage or incentiv-

ize a subject to promote or influence the actions of one or

more peers in a particular way, affect shared experiences

and interactions between groups of subjects, or even

encourage the formation of new connections between

subjects. Such networked treatments are in part made

possible by the emergence of online social networking

platforms and other digital social environments that
permit firm mediation of social interactions to both

platform owners and to other researchers through APIs

[49], allowing for varying degrees of experimental control

along the channel of social interaction [55], [82].

Networked treatments also enable experiments that can

act as important test beds for emerging social policies

aimed at producing or altering population-level change.

Categories of networked treatments include peer-oriented
incentive schemes, communication-altering schemes,

subject-grouping schemes, and network topology manip-

ulation schemes. Peer-oriented incentive schemes reward

subjects when their peers take a particular action, such as

purchasing a product or service [83], making certain

choices [34], [39], spreading a particular piece of content

or message (such as encouragement to have a flu shot or

get an HIV test), or encouraging referral chains [84] that
yield desired outcomes (such as a solution to a crowd-

sourced problem). Communication-altering schemes may

send automated referrals from a subject to his/her peer

[22], randomize the target of automated messages from a

subject to randomly chosen subsets of his/her peers [21], or

even block or moderate information exchange between

subjects [50], [83]. Subject-grouping schemes may randomly

designate experimental subjects to social environments [such
as pairing participants with online health buddies [41]–[43]

or designating subjects to online study groups in massive

open online courses (MOOCs)] contingent upon subject or

environmental characteristics. Network topology manipula-

tion schemes are designed to test the implications of network

topology for social computation processes such as collabora-

tive problem solving of competitive games [32]–[34], [39],

[45]. Depending on type, instantiation, and context,
networked treatments may either remain susceptible to or

circumvent interference effects. Future research should

evaluate when and to what extent emerging design and

inference strategies to address interference can be extended

to networked treatments or whether new strategies are

required.

IV. DISCUSSION/CONCLUSION

The increasing prevalence of networked environments and

the natural connectivity of our world present both

challenges to existing design and analysis methods for

randomized trials and opportunities to conduct novel

experiments involving networked treatments. It is likely

that large-scale experimentation in social networks will

lead to significant advances in the social sciences, just as
conventional randomized controlled trials advanced med-

icine in the second half of the 20th century. However, just

as the widening use of RCTs in medicine, psychology, and

other domains necessitated the development of specialized

methodologies and analysis techniques, the emergence of

NRCTs introduces a number of new challenges, issues, and

concerns. While we have systematically reviewed emerg-

ing approaches to address these topics, the study of the
implications of setting, process, and connectivity on design

and analysis of networked randomized trials is still very

much in its infancy. Well-designed networked treatments

and other novel approaches to the mechanism of

randomization [64] may circumvent many of the issues

discussed here. Future research employing networked

treatment designs should thoroughly consider issues of
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inference in the presence of interference. More generally,
practitioners conducting NRCTs should evaluate the

suitability of the design and analysis strategies outlined

here to their particular context. The dual challenge of

estimating both the impact of experimental interventions

that can propagate and the dynamics of propagation itself

may call for the development of concurrent design

strategies that allow for simultaneous empirical inferences

on the former and the latter. The development of analysis

techniques that can discriminate between multiple models
of propagation or outcome generating processes is also an

important avenue for future research. h
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José del R. Millán

Ecole Polytechnique Fédérale
de Lausanne (EPFL)

Lausanne, Switzerland

Gerwin Schalk

Wadsworth Center
NYS Department of Health
Albany, NY, USA

Klaus-Robert Müller

Machine Learning Group
Technical University Berlin
Berlin, Germany

2015
Physical-Layer Security and
its Applications
Guest Editors:

Phillip A. Regalia

National Science Foundation
USA

Yingbin Liang

Syracuse University
Syracuse, NY, USA

Ashish Khisti

University of Toronto
Toronto, ON, Canada

Stefano Tomasin

University of Padova
Padova, Italy

2015
Multimodal Data Fusion
Guest Editors:
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