A final word on proof by induction

- see page 329 (table of strategy).
- Prove by induction of inequalities

 Not informative example last class

1) prove \(p(n) := (n < 2^n) \)

Can prove directly:

Take \(\log_2 \) of both sides:

\[
\log_2 n < n log_2 2 \\
\log_2 n < n \\
\frac{\log_2 n}{n} < 1.
\]

True for all \(n \geq 1 \).

2) More interesting is to prove; for instance:

Try proving \(p(n) := (2^n < n!) \)

3) From last time

\[
n < 2^n \\
n + 1 < 2^n + 1 < 2^n + 2^n = 2(2^n) = 2^{n+1} \]

\[\uparrow\text{since } 2^n \geq 1 \text{ for } n \geq 1.\]

\[\therefore n + 1 < 2^{n+1}\]
Example recursive fun'cs.

Explicit factorial func: \(f(n) = n \cdot (n-1) \cdot (n-2) \ldots 2 \cdot 1 \)

Recursive factorial func:

- base case: \(f(0) = 1 \)
- \(\forall n \geq 1 \), \(f(n) = n \cdot f(n-1) \)

4. A very important recursive sequence is the Fibonacci numbers.

- Bases cases: \(f_0 = 0 \)
 \(f_1 = 1 \)

- \(\forall n \geq 1 \), \(f_n = f_{n-1} + f_{n-2} \)

- \(f = \{ 0, 1, 1, 2, 3, 5, 8, \ldots \} \)

- \(\lim_{n \to \infty} \frac{f_{n+1}}{f_n} = \left(\frac{1 + \sqrt{5}}{2} \right) = \Phi \) "the golden ratio"
Recursion: start from biggest element and work down to base case.

"while" / "if" statements in code/algorithms.

Iteration: start from the base case and build up.

"for" statements in algorithms/code.

We looked at recursive vs iterative \(f(n) = n! \).

Let's consider \(f(a, n) = a^n \).

Recursive algorithm.

```python
rpow(a, n)
    if n == 0
        return 1
    else
        return a * rpow(a, n-1)
```

Iterative algorithm.

```python
rpow(a, n)
x ← 1
for j = 1, 2, ... n
    x ← a * x
return x
```
Let's look at Algorithms 1, 2, 3, 4 of handout 10.

Here is an algorithm for iterative binary search with a check for $x = a_m$.

```
Binary search $(a, x)$
i ← 1
j ← n
m ← ⌊(i+j)/2⌋

while $((i < j) \text{ and } (x \neq a_m))$
    if $x > a_m$
        $i ← m+1$
    else
        $j ← m$
    endif
    m ← ⌊(i+j)/2⌋
end while

if $x = a_m$
    location ← m
else
    location ← 0
endif

return location.
```
Recursive Fibo(n)

if n == 0
 return 0

elseif n == 1
 return 1

else
 return Recursive Fibo(n-1) + Recursive Fibo(n-2)

Recursive is exponential run time
Next topic — Counting!

Identify the number of possible configurations/outcomes.
(for a discrete process).

Two basics — Product rule (outcomes multiple)
- Sum rule (outcomes add).

1) Product rule:

If there are A_1 choices for first task
and there are A_2 choices for second task

:. there are $A_1 \cdot A_2$ possible combinations.

Extended prod rule

A_1 choices for first
A_2 " " second
A_3 " " third
...
A_n " " n^{th}

Total # of choices: $A_1 \cdot A_2 \cdot A_3 \ldots A_n$
a) How many 1's in the range $1000 - 9999$?

\[\# \ 9 \cdot 10^3 = 9,000. \]

\# choices

10 10 10

\# \{1, 2, \ldots, 9\}

b) How many don't request a digit

\# choices: \(9 \cdot 9 \cdot 8 \cdot 7\)

\# choices

9 9 8 7

(\text{unique } a, b \text{ pairs})

c) How many functions are one-to-one from a set \(|A| = m\) to \(|B| = n\)?

\[\begin{array}{cccc}
\frac{n \cdot (n-1) \cdot (n-2) \cdots \cdot (n-m+1)}{m!}
\end{array} \]

\# of choices

de) \# of telephone numbers \#'s of ten digits \(Nxx - Nxx - xxx\)

\[N \in \{2, 3, \ldots, 9\}, \ x \in \{0, 1, \ldots, 9\} \]