Lec 11: Mid Term Review

- Review session Weds 5-6:30 in Kiebler #3.

- Propositions, \(p, q, r, t \), etc. \(\mapsto \{T, F\} \) map to \{1, 0\}.

- Compound props: operators \(\top, \land, \lor, \oplus \).

- Truth tables; length of table = \(2^{\# \text{of propositions}} \)
 (easier than symbolic logic derivations)

- Implication \(p \rightarrow q \) or \(P(x) \rightarrow Q(x) \)
 Only false/invalid if \(q = F \) and \(p = T \)
 \((p \rightarrow q) \equiv \neg p \lor q \)

 - Contrapositive \(q \rightarrow \neg p \equiv p \rightarrow \neg q \)

- Language: \(p \rightarrow q \) p is sufficient for q
 If p then q
 q if p
 q is necessary for p
 p only if q

- Biimplication \((p \rightarrow q) \land (q \rightarrow p) =: p \leftrightarrow q \)
 "if and only if"
 "necessary and sufficient"
Logical equivalences (symbolic logic)

* See the tables on canvas Tables 6, 7, 8, Table 1 Sec. 1.3 Sec. 1.6.

De Morgan's:

\[\neg (p \lor q) \equiv \neg p \land \neg q \]
\[\neg (p \land q) \equiv \neg p \lor \neg q \]

(generalizes to multiple propositions
\[\neg (p \lor q \lor r \lor \ldots) \]

- Predicate logic

\[P(x) \]
\[\text{subject} \quad P(x, y), Q(x, y, z), \text{etc.} \]
\[\text{predicate} \]

Once subject is given \(P(x) \rightarrow \) Proposition maps to \{T, F, \}

- Universal and existential quantification

(i.e. for which elements \(x \in U \) is \(P(x) = T \)?)

\[\forall x \; \text{"for all } x\space\text{"} \]
\[\exists x \; \text{"there exists an } x\space\text{"} \]

can specify the domain \(U \), e.g. \(\forall x \in \mathbb{R}, \exists x \in \mathbb{Z} \), etc.

De Morgan's

\[\neg \forall x \; P(x) \equiv \exists x \; \neg P(x) \]
\[\neg \exists x \; P(x) \equiv \forall x \; \neg P(x) \]
Build logical arguments w/ rules of inference.

\[
\begin{align*}
\text{Statement 1} & \quad \text{assumptions} \\
\text{Statement 2} & \quad \text{reasoning} \\
\vdots & \\
\text{conclusion}
\end{align*}
\]

Rules of inference

- **Modus Ponens (affirms)**
- **Modus Tollens (denies)**
- **Hypothetical syllogism**
 \[(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)\]
- **Disjunctive syllogism (useful for simplifying compound props)**
 \[(p \lor q) \land \neg p \rightarrow q\]

Types of "trivial" proofs

\[(p \rightarrow q) \land \neg p \text{ then } "\text{vacuous}" \text{ proof.}\]

\[(p \rightarrow q) \land q \text{ then } "\text{trivial}" \text{ proof.}\]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p \rightarrow q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>T</td>
</tr>
</tbody>
</table>
Fallacies:

Affirming the conclusion
saying \((p \rightarrow q) \land q\) therefore \(p\)

Denying the antecedent/premise
saying \((p \rightarrow q) \land \neg p\) therefore \(\neg q\)

Sets
select elements \(x \in U\).

Set builder notation

\[A = \{x \mid P(x)\} \quad \text{(all } x \in U \text{ for which } P(x) = T) \]

\[B = \{x, y \mid P(x, y)\} \]

\(2\) can be a complex instance (e.g., compound prop, implication, etc.)

Equivalence of sets

\[A = B \iff \forall x \ (x \in A \iff x \in B) \]

Remember in a set each element occurs at most once; and the order does not matter.

Cardinality of a set \(|A| = \# \text{ of elements}\).

Empty set \(\emptyset = \{\}\)

Empty set is a valid subset of every set. (But: not a member of every set)
Subsets: \(A \subseteq C \) all \(a \in A \) are also \(a \in C \) but there is an \(c \in C \) with \(c \not\in A \)

\(A \subseteq C \) if \(A \) can equal \(C \).

A subset is all ways of choosing a set of elements from a given set.

Power set, \(P(A) = \text{set of all possible subsets of } A \).

\[|P(A)| = 2^{\left|A\right|} \]

\(A = \{1, 2, 3\} \) or \(B = \{1, 2, 3, 3\} \)

\(\overbrace{\text{an element of a set can be a set.}}^\uparrow \)

\[|B| = 3, \quad |P(B)| = 2^3 = 8 \]

\[P(B) = \{\emptyset, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3, 3\}\} \]

- Venn diagrams
- Cartesian Products
- De Morgan's

\[\overline{A \cup B} = A \cap \overline{B} \]

\[\overline{A \cap B} = A \cup \overline{B} \]
- Union, intersection and subtraction of sets.

- Union of a collection of sets \(U \bigcup_{i=1}^{n} A_i \)

- Intersection \(\bigcap_{i=1}^{n} A_i \)

Functions \(f : A \rightarrow B \) (maps A to B)

Is a specific mapping:

- A function? - need every \(a \in A \) is mapped to one (not necessarily unique) \(b \in B \).

\[\text{Domain} \quad A \quad \rightarrow \quad B \quad \text{Codomain} \]

- 1-to-1 (injective); a function where every \(a \in A \) maps to a unique \(b \in B \).
 (each \(b \in B \) has at most one partner in \(A \))
 \[|\text{domain}| \leq |\text{codomain}| \]

- onto (surjective); a function where every \(b \in B \)
 has at least one partner in \(A \).
 \[|\text{domain}| \geq |\text{codomain}| = |\text{range}| \]
Bijection is both 1-to-1 and onto.

- Every \(a \in A \) has a unique partner in \(B \).
- Every \(b \in B \) has a unique partner in \(A \).
- \(|\text{domain}| = |\text{codomain}| = |\text{range}| \)

* A bijection means \(f^{-1}(x) \) exists.

Func. composition:

\[
(f \circ g)(x) = f(g(x))
\]

Inverse func. composition \((f \circ f^{-1})(x) = x \).

* Choice of domain & codomain can make all the difference
series: an order list, where repetition matters

Summations of sequences.

$$\sum_{k=0}^{n} a_k = a_0 + \sum_{k=1}^{n-1} a_k + a_n,$$

$$= a_0 + \sum_{j=1}^{n} a_j + \sum_{l=j+1}^{n} a_l$$

Imp. sums

$$\sum_{j=1}^{n} j, \sum_{j=1}^{n} j^2,$$ geometric series,

arithmetic series.

Proofs

Need some number theory background

- \mathbb{N}, \mathbb{Z}, \mathbb{Z}^+, \mathbb{R}, etc.

- Properties of these sets.
 - rational versus irrational
 - odd versus even
 - positive, negative, zero
 - prime versus composite.

(Needed these definitions as our axioms).
Methods of proof of an implication

- Direct proof $p \rightarrow q$
- Contrapositive $\neg q \rightarrow \neg p$
- Proof by contradiction
 - A proposition P; show $\neg p \rightarrow (r \land \neg r)$
 (where $p \rightarrow r$, typically a mathematical definition of property P).
 - Of implication $p \rightarrow q$
 Show $(p \land \neg q) \rightarrow (p \land \neg r) \lor (q \land \neg q)$

Argument

\[
\begin{align*}
 p & \text{ assert} \\
 \neg q & \text{ assert} \\
 \implies (p \land \neg q) \lor (q \land \neg q)
\end{align*}
\]

- Proof by cases
- Constructive existence proofs
- Non-constructive existence proofs.