The Theory of Sets

Rosen §2.1-2.2
Introduction to Set Theory

- A set is a new type of structure, representing an *unordered* collection (group, plurality) of zero or more *distinct* (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- *All* of mathematics can be defined in terms of some form of set theory (using predicate logic).
Basic notations for sets

• For sets, we’ll use variables S, T, U, …

• We can denote a set S in writing by listing all of its elements in curly braces:
 – $\{a, b, c\}$ is the set of whatever 3 objects are denoted by a, b, c.

• *Set builder notation*: For any proposition $P(x)$ over any universe of discourse, $\{x | P(x)\}$ is *the set of all x such that $P(x)$*.

Basic properties of sets

- Sets are inherently unordered:
 - No matter what objects a, b, and c denote,
 \[\{a, b, c\} = \{a, c, b\} = \{b, a, c\} = \{b, c, a\} = \{c, a, b\} = \{c, b, a\}. \]

- All elements are distinct (unequal); multiple listings make no difference!
 - If $a=b$, then \(\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}. \)
 - This set contains (at most) 2 elements!
Definition of Set Equality

- Two sets are declared to be equal if and only if they contain exactly the same elements.
- In particular, it does not matter how the set is defined or denoted.
- For example: The set \(\{1, 2, 3, 4\} = \{x \mid x \text{ is an integer where } x>0 \text{ and } x<5 \} = \{x \mid x \text{ is a positive integer whose square is } >0 \text{ and } <25\} \)
Infinite Sets

• Conceptually, sets may be *infinite* (*i.e.*, not *finite*, without end, unending).

• Symbols for some special infinite sets:
 \[\mathbb{N} = \{0, 1, 2, \ldots\} \quad \text{The Natural numbers.} \]
 \[\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\} \quad \text{The Integers.} \]
 \[\mathbb{R} = \text{The “Real” numbers, such as } 374.1828471929498181917281943125\ldots \]

• “Blackboard Bold” or double-struck font \((\mathbb{N}, \mathbb{Z}, \mathbb{R}) \) is also often used for these special number sets.

• Infinite sets come in different sizes!
Venn Diagrams

John Venn
1834-1923
Venn Diagrams

Positive integers less than 10

John Venn
1834-1923
Venn Diagrams

John Venn
1834-1923

Even integers from 2 to 9
Basic Set Relations: Member of

• $x \in S$ ("x is in S") is the proposition that object x is an *element* or *member* of set S.
 - e.g. $3 \in \mathbb{N}$, “a” $\in \{x \mid x$ is a letter of the alphabet}$$
 -$Can define set equality in terms of \in relation:
 \[
 \forall S, T: S = T \iff (\forall x: x \in S \iff x \in T)
 \]
 “Two sets are equal iff they have all the same members.”

• $x \notin S \equiv \neg (x \in S)$ “x is not in S”
The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\} = \{x \mid \text{False}\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x : x \in \emptyset$.
Subset and Superset Relations

- \(S \subseteq T \) ("S is a subset of T") means that every element of S is also an element of T.
- \(S \subseteq T \iff \forall x (x \in S \rightarrow x \in T) \)
- \(\emptyset \subseteq S, S \subseteq S. \)
- \(S \supseteq T \) ("S is a superset of T") means \(T \subseteq S. \)
- Note \(S = T \iff S \subseteq T \land S \supseteq T. \)
- \(S \nsubseteq T \) means \(\neg (S \subseteq T) \), i.e. \(\exists x (x \in S \land x \notin T) \)
Proper (Strict) Subsets & Supersets

- \(S \subset T \) ("\(S \) is a proper subset of \(T \)") means that \(S \subseteq T \) but \(T \not\subseteq S \). Similar for \(S \supset T \).

Example:
\[
\{1,2\} \subset \{1,2,3\}
\]
Sets Are Objects, Too!

- The objects that are elements of a set may themselves be sets.
- E.g. let $S = \{ x \mid x \subseteq \{1,2,3\}\}$
 then $S = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- Note that $1 \neq \{1\} \neq \{\{1\}\}$

Very Important!
Cardinality and Finiteness

• $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.

• E.g., $|\emptyset|=0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = ____$

• If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.

• What are some infinite sets we’ve seen?
Cardinality and Finiteness

- $|S|$ (read “the cardinality of S”) is a measure of how many different elements S has.
- E.g., $|\emptyset| = 0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\}, \{4,5\}\}| = ____$
- If $|S| \in \mathbb{N}$, then we say S is finite. Otherwise, we say S is infinite.
- What are some infinite sets we’ve seen?
The *Power Set* Operation

- The *power set* \(P(S) \) of a set \(S \) is the set of all subsets of \(S \). \(P(S) \equiv \{ x \mid x \subseteq S \} \).
- *E.g.* \(P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\} \).
- Sometimes \(P(S) \) is written \(2^S \).
 Note that for finite \(S \), \(|P(S)| = 2^{|S|} \).
- It turns out \(\forall S: |P(S)| > |S| \), *e.g.* \(|P(\mathbb{N})| > |\mathbb{N}| \).
 There are different sizes of infinite sets!
Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set \{a, b, c\} and set-builder \{x | P(x)\}.
- \in relational operator, and the empty set \emptyset.
- Set relations $=, \subseteq, \supseteq, \subset, \supset, \notin$, etc.
- Venn diagrams.
- Cardinality $|S|$ and infinite sets $\mathbb{N}, \mathbb{Z}, \mathbb{R}$.
- Power sets $P(S)$.
Naïve Set Theory is Inconsistent

- There are some naïve set *descriptions* that lead to pathological structures that are not *well-defined*.
 - (That do not have self-consistent properties.)
- These “sets” mathematically *cannot* exist.
- *E.g.* let $S = \{ x \mid x \notin x \}$. Is $S \in S$?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
Ordered n-tuples

These are like sets, except that duplicates matter, and the order makes a difference.

For $n \in \mathbb{N}$, an ordered n-tuple or a sequence or list of length n is written (a_1, a_2, \ldots, a_n).

Its first element is a_1, etc.

Note that $(1, 2) \neq (2, 1)$.

Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., n-tuples.
Cartesian Products of Sets

• For sets A, B, their Cartesian product $A \times B \equiv \{(a, b) \mid a \in A \land b \in B\}$.

• E.g. $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$

• Note that for finite A, B, $|A \times B| = |A||B|$.

• Note that the Cartesian product is not commutative: i.e., $\neg \forall A B: A \times B = B \times A$.

• Extends to $A_1 \times A_2 \times \ldots \times A_n$...
Review

- Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
- Set notations $\{a,b,...\}$, $\{x|P(x)\}$...
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations $|S|$, $P(S)$, $S \times T$.
- Next up: §1.5: More set ops: \cup, \cap, \setminus.

(c)2001-2003, Michael P. Frank
The Union Operator

- For sets A, B, their union $A \cup B$ is the set containing all elements that are either in A, or ("\lor") in B (or, of course, in both).
- Formally, $\forall A,B: A \cup B = \{ x \mid x \in A \lor x \in B \}$.
- Note that $A \cup B$ is a superset of both A and B (in fact, it is the smallest such superset): $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$.
Union Examples

- \{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}
- \{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}
The Intersection Operator

- For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and ("\&") in B.
- Formally, $\forall A, B: A \cap B = \{ x | x \in A \land x \in B \}$.
- Note that $A \cap B$ is a subset of both A and B (in fact it is the largest such subset): $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$.
Intersection Examples

- \(\{a,b,c\} \cap \{2,3\} = __ \)
- \(\{2,4,6\} \cap \{3,4,5\} = _____ \)
Two sets A, B are called disjoint (i.e., unjoined) iff their intersection is empty. ($A \cap B = \emptyset$)

Example: the set of even integers is disjoint with the set of odd integers.
Inclusion-Exclusion Principle

• How many elements are in $A \cup B$?
 $$|A \cup B| = |A| + |B| - |A \cap B|$$

• Example: How many students are on our class email list? Consider set $E = I \cup M$,
 $I = \{s \mid s$ turned in an information sheet$\}$
 $M = \{s \mid s$ sent the TAs their email address$\}$

• Some students did both!
 $$|E| = |I \cup M| = |I| + |M| - |I \cap M|$$
Set Difference

• For sets \(A, B \), the \textit{difference of }\(A \) \textit{and }\(B \), written \(A - B \), is the set of all elements that are in \(A \) but not \(B \). Formally:

\[
A - B \equiv \{ x \mid x \in A \land x \notin B \} = \{ x \mid \neg (x \in A \rightarrow x \in B) \}
\]

• Also called:
The \textit{complement of }\(B \) \textit{with respect to }\(A \).
Set Difference Examples

- \(\{1,2,3,4,5,6\} - \{2,3,5,7,9,11\} = \)

- \(\mathbb{Z} - \mathbb{N} = \{\ldots, -1, 0, 1, 2, \ldots\} - \{0, 1, \ldots\} \)
 = \{x \mid x \text{ is an integer but not a nat. \#}\}
 = \{x \mid x \text{ is a negative integer}\}
 = \{\ldots, -3, -2, -1\} \)
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”.

Set A

Set B
Set Difference - Venn Diagram

- $A \setminus B$ is what’s left after B “takes a bite out of A”
Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”

Set Difference - Venn Diagram

- $A - B$ is what’s left after B “takes a bite out of A”

Set $A - B$

Set A

Set B

Chomp!
Set Complements

- The *universe of discourse* can itself be considered a set, call it U.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A}, is the complement of A w.r.t. U, i.e., it is $U-A$.
- *E.g.*, If $U=\mathbb{N}$, $\{3, 5\} = \{0,1,2,4,6,7,...\}$
More on Set Complements

- An equivalent definition, when \(U \) is clear:

\[
\overline{A} = \{ x \mid x \notin A \}
\]
Set Identities

- **Identity:** $A \cup \emptyset = A = A \cap U$
- **Domination:** $A \cup U = U$, $A \cap \emptyset = \emptyset$
- **Idempotent:** $A \cup A = A = A \cap A$
- **Double complement:** $(\overline{A}) = A$
- **Commutative:** $A \cup B = B \cup A$, $A \cap B = B \cap A$
- **Associative:** $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) DeMorgan’s Law for propositions.

\[A \cup B = \overline{A} \cap \overline{B} \]

\[A \cap B = \overline{A} \cup \overline{B} \]
Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where the Es are set expressions), here are three useful techniques:

1. Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
2. Use set builder notation & logical equivalences.
3. Use a membership table.
Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

• Part 1: Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 – Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 – We know that $x \in A$, and either $x \in B$ or $x \in C$.
 • Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 • Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 – Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 – Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

• Part 2: Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. …
Review

• Sets S, T, U... Special sets \mathbb{N}, \mathbb{Z}, \mathbb{R}.
• Set notations $\{a,b,\ldots\}$, $\{x|P(x)\}$...
• Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, $S = T$, $S \subset T$, $S \supset T$.
• Operations $|S|$, $P(S)$, \times, \cup, \cap, \neg, \overline{S}
• Set equality proof techniques:
 – Mutual subsets.
 – Derivation using logical equivalences.
Generalized Unions & Intersections

• Since union & intersection are commutative and associative, we can extend them from operating on ordered pairs of sets \((A, B)\) to operating on sequences of sets \((A_1, \ldots, A_n)\), or even on unordered sets of sets, \(X = \{A \mid P(A)\}\).
Generalized Union

• Binary union operator: \(A \cup B \)
• \(n \)-ary union:
 \[
 A \cup A_2 \cup \ldots \cup A_n \equiv ((\ldots((A_1 \cup A_2) \cup \ldots)\cup A_n)
 \]
 (grouping & order is irrelevant)
• “Big U” notation: \(\bigcup_{i=1}^{n} A_i \)
• Or for infinite sets of sets: \(\bigcup_{A \in X} A \)
Generalized Intersection

- Binary intersection operator: $A \cap B$
- n-ary intersection:
 $$A_1 \cap A_2 \cap \ldots \cap A_n \equiv (((A_1 \cap A_2) \cap \ldots) \cap A_n)$$
 (grouping & order is irrelevant)
- “Big Arch” notation:
 $$\bigcap_{i=1}^{n} A_i$$
- Or for infinite sets of sets:
 $$\bigcap_{A \in X} A$$