1. **Big-O notation.** (Bounded from above)
 Let f and g be functions from (\mathbb{Z} or \mathbb{R}) to \mathbb{R}. We say that

 \[
 f(x) = O(g(x))
 \]

 if there are constants c and k such that

 \[
 |f(x)| \leq c|g(x)| \text{ whenever } x > k.
 \]

 Reads: “$f(x)$ is big-oh of $g(x)$”.
 Means: beyond some point k, function $f(x)$ is at most a constant c times $g(x)$.
 Note: The witnesses c and k are not unique!

 In set notation: \[
 \{ f : \mathbb{R} \to \mathbb{R} \mid \exists c, k > 0 \forall x > k \ |f(x)| \leq c|g(x)| \}
 \]

2. **Example:**

 Theorem 1. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where $a_n, \ldots, a_0 \in \mathbb{R}$. Then $f(x) = O(x^n)$.

 Proof. If $x > 1$,

 \[
 |f(x)| \leq |a_n| x^n + |a_{n-1}| x^{n-1} + \cdots + |a_1| x + |a_0| \\
 \leq (|a_n| + |a_{n-1}| + \cdots + |a_1| + |a_0|) x^n \\
 = cx^n.
 \]

3. **Examples:** Show that

 (a) $f(x) = x^2 + 2x + 1$ is $O(x^2)$.
 (b) $1 + 2 + 3 + \cdots + n$ is $O(n^2)$.
 (c) $f(n) = n!$ is $O(n^n)$.
 (d) $g(n) = \log n!$ is $O(n \log n)$.

4. **The rules for function composition:**

 Theorem 2. If $f_1(x) = O(g_1(x))$ and $f_2(x) = O(g_2(x))$, then

 \[
 (f_1 + f_2)(x) = O(\max(|g_1(x)|, |g_2(x)|)), \text{ and}
 \]

\[
\]
5. Example: Give a big-O notation estimate for $f(n) = 3n \log n! + (n^2 + 3) \log n$.

6. **Big-Ω notation.** (Bounded from below)
 Let f and g be functions from $(\mathbb{Z} \text{ or } \mathbb{R})$ to \mathbb{R}. We say
 \[f(x) = \Omega(g(x)) \]
 if there are constants c and k such that
 \[|f(x)| \geq c|g(x)| \text{ whenever } x > k. \]
 Reads: “$f(x)$ is big-omega of $g(x)$”.
 Means: beyond some point k, function $f(x)$ is at least a constant c times $g(x)$.
 In set notation: \{ $f : \mathbb{R} \to \mathbb{R} | \exists c > 0 \forall x > k |f(x)| \geq c|g(x)|$ \}
 E.g.: $f(x) = 8x^3 + 5x^2 + 6$ is $\Omega(x^3)$.

7. **Big-Θ notation.** (Exactly of the order)
 Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say
 \[f(x) = \Theta(g(x)) \]
 if
 \[f(x) = O(g(x)) \text{ and } f(x) = \Omega(g(x)). \]
 Reads: “$f(x)$ is big-theta of $g(x)$” or “$f(x)$ is of order $g(x)$”.
 In set notation: \{ $f : \mathbb{R} \to \mathbb{R} | \exists c_1, c_2 > 0 \forall x > k |f(x)| \leq |c_1g(x)| \leq |c_2g(x)|$ \}
 E.g.: $1 + 2 + \cdots + n$ is of order n^2. That is,
 \[1 + 2 + \cdots + n = \Theta(n^2). \]

8. Example:

 Theorem 3. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where $a_n, ..., a_0 \in \mathbb{R}$ and $a_n \neq 0$. Then $f(x)$ is of order x^n, i.e. $f(x) = \Theta(x^n)$.

9. Summary table of notation

\[f(x) \in \]

| \(O(g(x)) \) | \(\exists c k > 0 \forall x > k |f(x)| \leq |cg(x)| \) | For some \(c > 0 \), once \(x > k, |cg(x)| \) dominates |
|----------------------|--|---|
| \(o(g(x)) \) | \(\forall c > 0 \exists k > 0 \forall x > k |f(x)| \leq |cg(x)| \) | For all \(c > 0 \), once \(x > k, |cg(x)| \) dominates |
| \(\Omega(g(x)) \) | \(\exists c k > 0 \forall x > k |f(x)| \geq |cg(x)| \) | For some \(c > 0 \), once \(x > k, |cg(x)| \) is smaller |
| \(\omega(g(x)) \) | \(\forall c > 0 \exists k > 0 \forall x > k |f(x)| \geq |cg(x)| \) | For all \(c > 0 \), once \(x > k, |cg(x)| \) is smaller |
| \(\Theta(g(x)) \) | \(\exists c_1 c_2 k > 0 \forall x > k |c_1 g(x)| \leq |f(x)| \leq |c_2 g(x)| \) | For some \(c_1, c_2 > 0 \), once \(x > k, f(x) \) and \(g(x) \) are similar |