1. **Direct proof.**
 The implication \(p \rightarrow q \) can be proved by showing that if \(p \) is true then \(q \) must also be true. A proof of this kind is called a *direct proof*.

2. **Indirect Proof.**
 Proof by contraposition: Since the implication \(p \rightarrow q \) is equivalent to its contrapositive, \(\neg q \rightarrow \neg p \), the implication \(p \rightarrow q \) can be proved by showing that \(\neg q \rightarrow \neg p \) is true. This related implication is usually proved directly. An argument of this type is called an *indirect proof*.
 Example: Prove “If \(3n + 2 \) is odd, then \(n \) is odd”.
 A *vacuous proof* is established by showing \(\neg p \).
 A *trivial proof* is established by showing \(q \) is true.

3. **Proof by contradiction.**
 (a) *For proposition \(p \):* Assume \(\neg p \) is true and show this leads to both \(r \) and \(\neg r \) for some independent proposition \(r \); in other words \(\neg p \rightarrow (r \land \neg r) \).
 (b) *For implication \(p \rightarrow q \):* By assuming that the hypothesis \(p \) is true and that the conclusion \(q \) is false, then using \(p \) and \(\neg q \) as well as other axioms, definitions, and previously derived theorems, derives a contradiction. Proofs are based on noting that
 \[
 (((p \rightarrow q) \land p) \land \neg q) \equiv (q \land \neg q) \quad \text{likewise} \quad (p \land (\neg q \rightarrow \neg p)) \equiv (p \land \neg p).
 \]
 Exmpl (a): Prove that \(\sqrt{2} \) is irrational.
 Exmpl (b): Prove that for all real numbers \(x \) and \(y \), if \(x + y \geq 2 \), then either \(x \geq 1 \) or \(y \geq 1 \).

4. **Equivalence proof** (or “if-and-only-if proof”, “necessary-and-sufficient proof”).
 To prove a theorem that is an equivalence, i.e., \(p \leftrightarrow q \), the tautology
 \[
 (p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow p))
 \]
 can be used. That is, the proposition “\(p \) if and only if \(q \)” can be proved if both the implication “if \(p \) then \(q \)” and “if \(q \) then \(p \)” are proved.
 Example: Prove the theorem: The integer \(n \) is odd if and only if \(n^2 \) is odd.”
5. **Exhaustive proof / proof by cases**

Exhaustive proof: Proof by showing it holds for all possible \(x \) in \(U \) (e.g. a truth table).

Proof by cases: Proof by showing it holds for all possible cases. (Useful when direct proof not simple but the extra information in the cases let’s you move forward.)

Example: Prove that if \(n \) is an integer, then \(n^2 \geq n \). (Three cases, \(n < 0, n = 0, n > 0 \).)

Without loss of generality (WLOG): Same proof holds for all cases. Quite useful but gets one into trouble (a common mistake in a proof).

6. **Constructive existence proof:** of statement of the form \(\exists x P(x) \). Just find one value of \(x \) in \(U \) for which \(P(x) \) is true. (Hence “constructive”)

Example: Prove there exists a positive integer \(n \) that is the sum of cubes of positive integers in two ways: \(\exists n : n = i^3 + j^3 = k^3 + l^3 \).

7. **Nonconstructive existence proof.** Don’t pinpoint the exact values that satisfy, just show they must exist.

Example: Show there exist irrational numbers \(x \) and \(y \) such that \(x^y \) is rational. In propositional language \(\exists x, y ((\text{Irrational}(x) \land \text{Irrational}(y)) \to \text{Rational}(x^y)) \).

Example: Prove there are infinitely many primes; \(\forall n \exists p > n \) where \(p \) is prime.

8. **Proof by counterexample.**

The goal of such a proof is to show \(\forall x P(x) \) is false.

(Note: Showing \(\exists x P(x) \) is false is counterexample for \(\forall x P(x) \), but this is not a counterexample for the conjecture \(\exists x P(x) \).)

Example: Show that the assertion “All primes are odd” is false.

9. **Mistakes in proofs.**

False premises

Circular reasoning

Not considering all cases (e.g. missing \(x = 0 \) case).

Showing \(\exists \) a satisfying value to prove \(\forall \) statements.

Assuming \(\exists \) means that all instances satisfy.

Example: What is wrong with the famous supposed “proof” that \(1 = 2 \)?