1. A set is an unordered collection of distinct objects. Notation \(A, B, C, \ldots \). Duplicate elements only count once, e.g. if \(a = b \) then \(A = \{a,b,c\} = \{a,c\} \).

2. The objects in a set are also called the elements, or members, of the set. A set is said to contain its elements. We denote that \(x \) is an element of \(A \) by \(x \in A \).

3. Set builder notation \(A = \{x | P(x)\} \), \(A \) is the set of all \(x \) such that \(P(x) \) holds.

4. Two sets \(A \) and \(B \) are equal if and only if they have the same elements.
 \[A = B \iff \forall x (x \in A \iff x \in B). \]

5. The set \(A \) is a subset of \(B \) iff (“if and only if”) every element \(A \) is also an element of \(B \).
 \[A \subseteq B \iff \forall x(x \in A \rightarrow x \in B). \]
 If it is a proper subset: \(A \subset B \) if \(\forall x(x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A) \).

6. The empty (null) set contains no elements and is denoted \(\emptyset \) or \{\}.

7. For every set \(S \), \(\emptyset \subset S \) and \(S \subseteq S \).

8. Sets can be composed of sets, for example \(S = \{\{A\}, \{B\}\} \). (Note, \(S \notin S \), but \(S \in \{S\} \).)
 For instance, \(\{\emptyset\} \) (also denoted \(\{\{\}\}\)) is the set containing the empty set, so \(\{\emptyset\} \notin \emptyset \), but \(\{\emptyset\} \in \{\{\emptyset\}\} \).

9. The universal set \(U \) contains all objects under consideration (all \(x \) in the domain \(U \)).

10. Venn diagram.

11. If there are \(n \) distinct elements in the set \(S \) where \(n \) is a nonnegative integer, we say that \(S \) is a finite set. \(n = |S| \) is the cardinality of \(S \). A set is said to be infinite if it is not finite.

12. Given a set \(S \), the power set of \(S \) is the set of all subsets of \(S \), denoted \(P(S) \). e.g., let \(S = \{1,2,3\} \), then \(P(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} \). The cardinality \(|P(S)| = 2^{|S|} \) for \(|S| \) finite.

13. The ordered \(n \)-tuple \((a_1, a_2, \ldots, a_n)\) is the ordered collection that has \(a_1 \) as its first element, \(a_2 \) as its second element, \ldots, and \(a_n \) as its \(n \)th element. Here duplicates matter! \(n = 2, 2 \)-tuples are called ordered pairs.
14. Let \(A \) and \(B \) be sets. The **Cartesian product** of \(A \) and \(B \), denoted \(A \times B \), is the set

\[
A \times B = \{(a, b) \mid a \in A \land b \in B\}.
\]

e.g., The Cartesian product \(A \times B \) of \(A = \{1, 2\} \) and \(B = \{a, b, c\} \).

\[
A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.
\]

These are *ordered sets* so \(A \times B \neq B \times A \) (unless \(A = B \), or \(A = \emptyset \), or \(B = \emptyset \)).

15. The Cartesian product of the sets \(A_1, A_2, \ldots, A_n \):

\[
A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \ldots, n\}.
\]

16. **Universal quantifier:** \(\forall x \in S(P(x)) \) means \(\forall x (x \in S \rightarrow P(x)) \).

 Existential quantifier: \(\exists x \in S(P(x)) \) means \(\exists x (x \in S \land P(x)) \).

 Truth set: If \(\forall x P(x) \), the *truth set* of \(P(x) \) is the set \(U \).

 If \(\exists x P(x) \), the *truth set* of \(P(x) \) is nonempty.

17. The **union** of \(A \) and \(B \):

\[
A \cup B = \{x \mid x \in A \lor x \in B\}.
\]

18. The **intersection** of \(A \) and \(B \):

\[
A \cap B = \{x \mid x \in A \land x \in B\}.
\]

19. \(|A \cup B| = |A| + |B| - |A \cap B| \) (principles of inclusion-exclusion).

20. Two sets are called **disjoint** if their intersection is the empty set \(\emptyset \).

21. The **difference** of \(A \) and \(B \): \(A - B = \{x \mid x \in A \land x \notin B\} \).

 \(A - B \) is also called the *complement* of \(B \) with respect to \(A \).

22. The complement of the set \(A \): \(\overline{A} = \{x \mid x \notin A\} \).

23. Set identities, refer to Table 1 in section 2.2.

 Example: Proof of De Morgan’s law: \(\overline{A \cap B} = \overline{A} \cup \overline{B} \).

24. Generalization union: \(A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^{n} A_i \).

 Generalization intersection: \(A_1 \cap A_2 \cap \cdots \cap A_n = \bigcap_{i=1}^{n} A_i \).

25. Reading: computer representation of sets.