1. A function from A to B is an assignment of exactly one element of B to each element of A.
 Notation: $f : A \rightarrow B$, $f(a) = b$
 A is called the domain of F and B is the codomain.
 The set $\{f(a) \mid a \in A\}$ is called the range of f.

2. $f : A \rightarrow B$ is one-to-one or injective if $f(a) = f(b)$ then $a = b$.
 (If not injective it is many-to-one.)
 Examples:
 - Is the function $f : \mathbb{Z} \rightarrow \mathbb{Z}$, $f(x) = x^2$ one-to-one?
 - Is the function $f : \{\text{US residents}\} \rightarrow \mathbb{Z}$, $f(x) = \text{SSN}$ one-to-one?

3. $f : A \rightarrow B$ is onto, or surjective, if for any $b \in B$, there is an $a \in A$ with $f(a) = b$.
 Examples:
 - Is the function $f : \mathbb{Z} \rightarrow \mathbb{Z}$, $f(x) = x^2$ onto? (Is every \mathbb{Z} the square of a number?)
 - Is the function $f(x) = x + 1$ from \mathbb{Z} to \mathbb{Z} onto?

4. f is one-to-one correspondence, or a bijection, if it is both one-to-one and onto.
 Examples:
 - Is $f(x) = x + 1$ from \mathbb{Z} to \mathbb{Z} bijective?
 - The identity function $\ell_A : A \rightarrow A$, $\ell_A(x) = x$, is a bijection?

5. If $f : A \rightarrow B$ is a bijection, then the function $f^{-1} : B \rightarrow A$ defined by $f^{-1}(b) = a$ if $f(a) = b$ is called the inverse function or f.
 Examples:
 - Let $f(x) = x + 1$, is f invertible? If yes, what is f^{-1}?
 - Let $f(x) = x^2$, is f invertible? If yes, what is f^{-1}?

\[\text{1The notation } \mathbb{Z} \text{ for the set of integers comes from the German word “Zahlen”}\]
6. Let f_1 and f_2 be two functions from A to \mathbb{R}, then $f_1 + f_2$ and f_1f_2 are also functions from A to \mathbb{R} defined by

\[
(f_1 + f_2)(x) = f_1(x) + f_2(x),
\]
\[
(f_1f_2)(x) = f_1(x)f_2(x).
\]

Example: Let $f_1(x) = x^2$ and $f_2(x) = x - x^2$, then

\[
(f_1 + f_2)(x) = \quad (f_1f_2)(x) = \]

7. If $g : A \rightarrow B$ and $f : B \rightarrow C$, then define $h : A \rightarrow C$, $h(a) = f(g(a))$. h is called the composite function of f and g, and written as $f \circ g$.

Examples:

- Let $f(x) = 2x + 3$ and $g(x) = 3x + 2$,
 \[
 (f \circ g)(x) = f(g(x)) = 2(3x + 2) + 3 = 6x + 7 \\
 (g \circ f)(x) = g(f(x)) = 3(2x + 3) + 2 = 6x + 11
 \]
- Since $f^{-1}(b) = a$ when $f(a) = b$,
 \[
 (f^{-1} \circ f)(a) = f^{-1}(f(a)) = f^{-1}(b) = a.
 \]

8. Two frequently used functions in computer science (translating real values to binary):

$f : \mathbb{R} \rightarrow Z$. Let $x \in \mathbb{R}$,

- floor function: $\lfloor x \rfloor =$ the largest integer n such that $n \leq x$.
- ceiling function: $\lceil x \rceil =$ the smallest integer n such that $n \geq x$.

Example: How many 8-bit packets can be transmitted in a second if the rate is 80 bits/sec? How many 8-bit packets can be transmitted in a second if the rate is 60 bits/sec?