1) A simple refrigerator:
Consider a refrigeration cycle operating in steady-state with performance coefficient $\beta = 4.5$ and work input at the rate $\dot{W} = 0.8$ kW. Energy is rejected from the refrigerator to the surroundings, which are at $T = 293$°K. Determine:

a) the rate energy is rejected, in kW.

b) the lowest theoretical temperature inside the refrigerator.

2) Composite engines:
The figure below shows a system consisting of a power cycle driving a heat pump. At steady-state, the power cycle receives \dot{Q}_s by heat transfer at T_s from the high-temperature source and delivers \dot{Q}_1 to a dwelling at T_d. The heat pump receives \dot{Q}_0 from the outdoors at T_0, and delivers \dot{Q}_2 to the dwelling.

a) Obtain an expression for the maximum theoretical value of the performance parameter $(\dot{Q}_1 + \dot{Q}_2)/\dot{Q}_s$ in terms of the temperature ratios T_s/T_d and T_0/T_d.

b) Plot the result of part (a) versus T_s/T_d ranging from 2 to 4 for $T_0/T_d = 0.85, 0.9$, and 0.95.