Functions and Sequences
Rosen, Secs. 2.3, 2.4
Function: Formal Definition

• Def. For any sets A, B, we say that a function f (or “mapping”) from A to B is a particular assignment of exactly one element $f(x) \in B$ to each element $x \in A$. We can write

$$f: A \rightarrow B$$

• For $a \in A$ and $b \in B$, we can evaluate $f(a) = b$.
Important Function Terminology

- **Def.** Let $f: A \rightarrow B$, and $f(a) = b$ (where $a \in A$ & $b \in B$). Then
 - A is the *domain* of f.
 - B is the *codomain* of f.
 - b is the *image* of a under f.
 - a is a *pre-image* of b under f.
 - In general, b may have more than 1 pre-image.
 - The *range* $R \subseteq B$ of f is $R = \{b \mid \exists a \ f(a) = b \}$.
Graphical Representations

- Functions can be represented graphically in several ways:

Like Venn diagrams

Bipartite Graph

(This has \(f: \mathbb{R} \to \mathbb{R} \))

Note: EVERY element of set A has to be mapped to ONE (and only one) element in B.
One-to-One or “Injective” functions

- Bipartite (2-part) graph representations of functions that are (or are not) one-to-one:

 ![Graphs]

 One-to-one
 Not one-to-one
 Not a function!

 (“Many-to-one” instead)

Note $|\text{domain}| \leq |\text{codomain}|$ for 1-to-1
Onto or “surjective” functions

- Some functions that are, or are not, onto their codomains:

 - Onto (but not 1-1)
 - Not Onto (or 1-1)
 - Both 1-1 and onto
 - 1-1 but not onto

Note |domain| \(\geq|\text{codomain}|\) for onto
1-1 and onto = \textbf{bijection/invertible}

• Some functions that are, or are not, \textit{onto} their codomains:

- Onto (but not 1-1)
- Not Onto (or 1-1)
- Both 1-1 and onto
- 1-1 but not onto
Bijections

• **Def.** A function f is said to be a *bijection*, (or a *one-to-one correspondence*, or *reversible*, or *invertible*,) iff it is both one-to-one and onto.

• **Def.** For bijections $f:A \rightarrow B$, there exists an *inverse of f*, written $f^{-1}:B \rightarrow A$, which is the unique function such that
 * (where I_A is the identity function on A)

\[
f^{-1} \circ f = I_A
\]

|Domain| = |Codomain| = |Range|

We can invert the function!!
Graphs of Functions

• We can represent a function \(f:A \rightarrow B \) as a set of ordered pairs \(\{(a,f(a)) \mid a \in A\} \).

• Note that \(\forall a \), there is only 1 pair \((a,b) \).
 • Later (ch.6): relations loosen this restriction.

• For functions over numbers, we can represent an ordered pair \((x,y) \) as a point on a plane.
 • A function is then drawn as a curve (set of points), with only one \(y \) for each \(x \).
A Couple of Key Functions

• In discrete math, we will frequently use the following two functions over real numbers:

• **Def.** The *floor* function $\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{Z}$, where $\lfloor x \rfloor$ ("floor of x") means the largest (most positive) integer $\leq x$. *Formally*, $\lfloor x \rfloor \equiv \max(\{ j \in \mathbb{Z} \mid j \leq x \})$.

• **Def.** The *ceiling* function $\lceil \cdot \rceil : \mathbb{R} \to \mathbb{Z}$, where $\lceil x \rceil$ ("ceiling of x") means the smallest (most negative) integer $\geq x$. *Formally*, $\lceil x \rceil \equiv \min(\{ j \in \mathbb{Z} \mid j \geq x \})$.
Visualizing Floor & Ceiling

• Real numbers “fall to their floor” or “rise to their ceiling.”

• Note that if \(x \notin \mathbb{Z} \),

 \[
 \lfloor -x \rfloor \neq - \lfloor x \rfloor \quad \text{and} \quad \lceil -x \rceil \neq - \lceil x \rceil
 \]

• Note that if \(x \in \mathbb{Z} \),

 \[
 \lfloor x \rfloor = \lceil x \rceil = x.
 \]
Plots with floor/ceiling: Example

- Plot of graph of function $f(x) = \lfloor x/3 \rfloor$:

Note, the open dot denotes that in the limit the point is not on the curve, and the closed dot means it is on the curve.
Operators (general definition)

- **Def.** An *n-ary operator over* (or *on*) the set S is any function from the set of ordered n-tuples of elements of S, to S itself.

- **Ex.** If $S=\{T,F\}$,
 - \neg can be seen as a unary operator, and \land, \lor are binary operators on S.

- **Ex.** \cup and \cap are binary operators on the set of all sets. (See HW3 with $\bigcup_{i=1}^{k}$ notation)
Combining Function Operators

•

 \(+, \times \) ("plus", "times") are binary operators over \(\mathbb{R} \). (Normal addition & multiplication.)

• Therefore, we can also add and multiply functions

• Def. Let \(f, g: \mathbb{R} \to \mathbb{R} \).

 • \((f + g): \mathbb{R} \to \mathbb{R} \), where \((f + g)(x) = f(x) + g(x) \)

 • \((f \times g): \mathbb{R} \to \mathbb{R} \), where \((f \times g)(x) = f(x) \times g(x) \)
Function Composition Operator

- **Def.** Let \(g: A \rightarrow B \) and \(f: B \rightarrow C \). The *composition of \(f \) and \(g \)*, denoted by \(f \circ g \), is defined by \((f \circ g)(a) = f(g(a))\).

- **Remark.** \(\circ \) (like Cartesian product \(\times \), but unlike \(+, \wedge, \cup\)) is non-commuting. (Generally, \(f \circ g \neq g \circ f \).)
Review of §2.3 (Functions)

• Function variables \(f, g, h, \ldots \)
• Notations: \(f: A \rightarrow B, f(a), f(A) \).
• Terms: image, preimage, domain, codomain, range, one-to-one, onto, strictly (in/d)ecreasing, bijective, inverse, composition.
• Function unary operator \(f^{-1} \), binary operators +, -, etc., and ◦.
• The \(\mathbb{R} \rightarrow \mathbb{Z} \) functions \([x]\) and \([x]\).
A sequence or series is just like an ordered n-tuple, except:

- Each element in the series has an associated index number. E.g., \((a_1, a_2, \ldots, a_k) \)
- A sequence or series may be infinite.

A string is a sequence of symbols from some finite alphabet. (e.g., words in a language)

A summation is a compact notation for the sum of all terms in a (possibly infinite) series.

\[
\sum_{i=j}^{k} a_i \equiv a_j + a_{j+1} + \ldots + a_k
\]
Sequences

• **Def.** A sequence or series \(\{a_n\} \) is identified with a *generating function* \(f: S \to A \) for some subset \(S \subseteq \mathbb{N} \) and for some set \(A \).

 • Often we have \(S = \mathbb{N} \) or \(S = \mathbb{Z}^+ = \mathbb{N} - \{0\} \).
Recognizing Sequences

- Sometimes, you’re given the first few terms of a sequence and you need to find the sequence’s **generating function**, which is a procedure to enumerate the sequence.

- Examples: What’s the next number?
 - 1,2,3,4,…
 - 1,3,5,7,9,…
 - 2,3,5,7,11,…
 - 5 (the 5th smallest number >0)
 - 11 (the 6th smallest odd number >0)
 - 13 (the 6th smallest prime number)
Sequence elements, \(a_n \)

Def. If \(f \) is a generating function for a series \(\{a_n\} \), then for \(n \in S \), the symbol \(a_n \) denotes \(f(n) \), also called *term n* of the sequence.

The *index* of \(a_n \) is \(n \). (Or, often \(i \) is used.)

A series is sometimes denoted by listing its first and/or last few elements, and using ellipsis (\(\ldots \)) notation.

E.g., \(\{a_n\} = 0, 1, 4, 9, 16, 25, \ldots \) is taken to mean

\[
\forall n \in \mathbb{N}, \ a_n = n^2.
\]
Sequence Examples

• Some authors write “the sequence $a_1, a_2, ...$” instead of $\{a_n\}$, to ensure that the set of indices is clear. Be careful: often notation leaves the indices ambiguous, but context makes it clear.

• Ex. An example of an infinite series:
 • Consider the series $\{a_n\} = a_1, a_2, ..., \text{ where } (\forall n \geq 1) a_n = f(n) = 1/n$.
 • Then, we have $\{a_n\} = 1, 1/2, 1/3, ...$
Switch to blackboard mode