UC Davis
ECS20, Winter 2019

Discrete Mathematics for Computer Science

Prof. Raissa D’Souza
(slides adopted from Michael Frank and Haluk Bingöl)

Lecture 3
Foundations of Logic: Overview

• Propositional logic (§1.1-1.2):
 – Basic definitions. (§1.1)
 – Equivalence rules & derivations. (§1.2)

• Predicate logic (§1.3-1.4)
 – Predicates.
 – Quantified predicate expressions.
 – Equivalences & derivations.
Implication Truth Table

- $p \rightarrow q$ is false only when p is true but q is not true.

- $p \rightarrow q$ does not say that p causes q!

- $p \rightarrow q$ does not require that p or q are ever true!

- *E.g.* “$(1=0) \rightarrow \text{pigs can fly}”$ is TRUE!

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The contrapositive \(\neg q \rightarrow \neg p \)

- Proving \(p \rightarrow q \equiv \neg q \rightarrow \neg p \) using truth tables:

<table>
<thead>
<tr>
<th></th>
<th>(q)</th>
<th>(\neg q)</th>
<th>(\neg p)</th>
<th>(p \rightarrow q)</th>
<th>(\neg q \rightarrow \neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The cornerstone arguments in logic (Sec 1.6) and Lec 6. Modus Ponens & Tollens

\[
\begin{align*}
\begin{array}{c}
p \\
p \rightarrow q
\end{array} & \quad \text{Rule of \textit{modus ponens}} \\
\therefore q
\end{align*}
\]

\[
\begin{align*}
(p \land (p \rightarrow q)) & \rightarrow q
\end{align*}
\]

“p is sufficient for q”

“the mode of affirming”

\[
\begin{align*}
\begin{array}{c}
\neg q \\
p \rightarrow q
\end{array} & \quad \text{Rule of \textit{modus tollens}} \\
\therefore \neg p
\end{align*}
\]

\[
\begin{align*}
(\neg q \land (p \rightarrow q)) & \rightarrow \neg p
\end{align*}
\]

“q is necessary for p”

“the mode of denying”
Example Equivalence Laws

• **Distributive:** $p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$

 $p \land (q \lor r) \iff (p \land q) \lor (p \land r)$

• **De Morgan’s:**

 $\neg (p \land q) \iff \neg p \lor \neg q$

 $\neg (p \lor q) \iff \neg p \land \neg q$

• **Trivial tautology/contradiction:**

 $p \lor \neg p \iff \text{T}$

 $p \land \neg p \iff \text{F}$
Review: Propositional Logic (§§1.1-1.2)

- Atomic propositions: p, q, r, \ldots
- Boolean operators: $\neg \land \lor \oplus \rightarrow \leftrightarrow$
- Compound propositions: $s \equiv (p \land \neg q) \lor r$
- Equivalences: $p \land \neg q \iff \neg (p \rightarrow q)$
- Proving equivalences using:
 - Truth tables.
 - Symbolic derivations. $p \iff q \iff r \ldots$
Predicate Logic
Predicate Logic (§1.3)

- *Predicate logic* is an extension of propositional logic that permits concisely reasoning about whole *classes* of entities.

- Recall algebraic formulas like $x > 3$ are not propositions!

- Predicate logic lets us expand Boolean logic to situations where there is one or more *variables* need to be accounted for.
Propositional Functions

Define a propositional function $P(x)$

• For instance a math expression, $x > 3$
• For some values of x, $x > 3$ is T
• For other values of x, $x > 3$ is F
• “x” object, “>3” predicate

• Or, an English expression,
 $P(x) = “Student \ x \ is \ sleeping”$.

P is called the predicate
x is called the object

A propositional function $P(x)$ takes in an object as an argument and creates a proposition.
Given a specific value of \(x \) then \(P(x) \) becomes a proposition

- The *result of applying* a propositional function \(P(x) \) to a specific object, it becomes a *proposition*. But the predicate \(P \) itself (e.g. \(P = \text{“is sleeping”} \)) is not a proposition (it is not a complete sentence).

- *E.g.* if \(P(x) = \text{“x is a prime number”} \), \(P(3) \) is the *proposition* “3 is a prime number.”

- If \(P(x) = \text{“x is sleeping”} \), then \(P(\text{Mary}) \) is the *proposition* “Mary is sleeping.”
Multiple subjects/variables

Propositional functions can be constructed with multiple subjects (i.e. multiple variables, x, y, z, etc.)

• E.g. let \(P(x,y,z) = \text{“x gave y the grade z”} \),

then if

\(x = \text{“Mike”} , y = \text{“Mary”} , z = \text{“A”} \), then

\(P(x,y,z) = \text{“Mike gave Mary the grade A.”} \)
Form a foundation for programming

• If a condition holds $P(x)$ is T, execute code
• Define $P(x) = "x < 10"$
• Now consider the following basic program,
 $x := 2$
 while $P(x)$ then $x = x+1$
• How many times does the while loop execute?

(Recall “:=“ means “is defined/initialized as”)
HW1 assignment uses this “:=“ operator.
Domain of Discourse
(or Universe of Discourse)

• What values can the variables take on?
 • x could be all integers, e.g. P(x) = x > 3
 • x could be all students in the class, e.g., P(x) = “student x is sleeping”

• The collection of values that a variable x can take is called x’s domain of discourse.

• For a multivariate function, P(x,y,z), the domain of discourse is the allowed values of all three x, y, and z.
• The power of a predicate function is that it lets you state things about *many* objects at once.

• E.g., let $P(x) = “x+1>x”$, where the domain of discourse is the integers.

• We can then say, “For *any* integer x, $P(x)$ is true” instead of $(0+1>0) \land (1+1>1) \land (2+1>2) \land ...$

• But we need quantifiers to express for what elements of the domain the predicate function creates a valid proposition.
Quantifier Expressions

- **Quantifiers** provide a notation that allows us to quantify (count) how many objects in the domain of discourse satisfy a given predicate.

- “∀” is the **FORALL** or *universal* quantifier.
 \(\forall x \ P(x) \) means *for all* \(x \) in the u.d., \(P \) holds.

- “∃” is the **EXISTS** or *existential* quantifier.
 \(\exists x \ P(x) \) means *there exists* an \(x \) in the u.d. (that is, 1 or more) such that \(P(x) \) is true.
The Universal Quantifier ∀

• Example:
Let the u.d. of x be parking spaces at the university.
Let $P(x)$ be the predicate "x is full."
Then the universal quantification of $P(x)$, $\forall x \ P(x)$, is the proposition:
 • “All parking spaces at UCD are full.”
 • i.e., “Every parking space at UCD is full.”
 • i.e., “For each parking space at UCD, that space is full.”
The Universal Quantifier \forall

$$\forall x \ P(x) \equiv P(x_1) \land P(x_2) \land P(x_3) \land \ldots \land P(x_U)$$

$P(x)$ is true for every element x in U.
The Existential Quantifier \exists

- Example:
 Let the u.d. of x be parking spaces at the university.
 Let $P(x)$ be the predicate “x is full.”
 Then the existential quantification of $P(x)$, $\exists x P(x)$, is the proposition:
 - “Some parking space at UCD is full.”
 - “There is a parking space at UCD that is full.”
 - “At least one parking space at UCD is full.”
The Existential Quantifier \exists

$$\exists x \ P(x) \equiv P(x_1) \lor P(x_2) \lor P(x_3) \lor \ldots \lor P(x_u)$$

$P(x)$ is true for at least one element x in U.
Free and Bound Variables

• An expression like $P(x)$ is said to have a *free variable* x (meaning, x is undefined).

• A quantifier (either \forall or \exists) *operates* on an expression having one or more free variables, and *binds* one or more of those variables, to produce an expression having one or more *bound variables*.
Example of Binding

- $P(x,y)$ has 2 free variables, x and y.
- $\forall x \ P(x,y)$ has 1 free variable, and one bound variable. [Which is which?]

- “$P(x)$, where $x=3$” is another way to bind x.
- An expression with zero free variables is a bona-fide (actual) proposition.
- An expression with one or more free variables is still only a predicate: *e.g. let $Q(y) = \forall x \ P(x,y)$*
Nesting of Quantifiers

- Example: Let the u.d. of \(x \) & \(y \) be people.
- Let \(L(x, y) = "x \text{ likes } y" \) (a predicate w. 2 f.v.'s)
- Then \(\exists y \ L(x, y) = \"There is someone whom \(x \) likes.\" \) (A predicate w. 1 free variable, \(x \))
- Then \(\forall x \ (\exists y \ L(x, y)) = \"Everyone has someone whom they like.\" \) (A __________ with ___ free variables.)
Review: Predicate Logic (§1.3)

- Objects \(x, y, z, \ldots \)
- Predicates \(P, Q, R, \ldots \) are functions mapping objects \(x \) to propositions \(P(x) \).
- Multi-argument predicates \(P(x, y) \).
- Quantifiers:
 \[\forall x \, P(x) \] : \(\equiv \) “For all \(x \)’s, \(P(x) \).”
 \[\exists x \, P(x) \] : \(\equiv \) “There is an \(x \) such that \(P(x) \).”
- Domain of discourse, bound & free vars.
Quantifier Exercise (do this in class)

If \(R(x,y) = \text{“} x \text{ relies upon } y, \text{”} \) express the following in unambiguous English:

- \(\forall x (\exists y R(x,y)) = \) Everyone has someone to rely on.
- \(\exists y (\forall x R(x,y)) = \) There’s a poor overburdened soul whom everyone relies upon (including himself)!
- \(\exists x (\forall y R(x,y)) = \) There’s some needy person who relies upon everybody (including himself).
- \(\forall y (\exists x R(x,y)) = \) Everyone has someone who relies upon them.
- \(\forall x (\forall y R(x,y)) = \) Everyone relies upon everybody, (including themselves)!
Natural language is ambiguous!

• “Everybody likes somebody.”
 • For everybody, there is somebody they like,
 • $\forall x \exists y \text{Likes}(x,y)$
 • or, there is somebody (a popular person) whom everyone likes?
 • $\exists y \forall x \text{Likes}(x,y)$

• “Somebody likes everybody.”
 • Same problem: Depends on context, emphasis.
Still More Conventions

• Sometimes the universe of discourse is restricted within the quantification, *e.g.*,

 \[\forall x > 0 \ P(x)\]
 is shorthand for
 “For all \(x\) that are greater than zero, \(P(x)\).”
 \[= \forall x \ (x > 0 \rightarrow P(x))\]

• \(\exists x > 0 \ P(x)\) is shorthand for
 “There is an \(x\) greater than zero such that \(P(x)\).”
 \[= \exists x \ (x > 0 \land P(x))\]
Quantifier Equivalence Laws

• Definitions of quantifiers: If u.d.=a,b,c,...
 \(\forall x \, P(x) \iff P(a) \land P(b) \land P(c) \land ... \)
 \(\exists x \, P(x) \iff P(a) \lor P(b) \lor P(c) \lor ... \)

• From those, we can prove the laws:
 \(\forall x \, P(x) \iff \neg \exists x \, \neg P(x) \)
 \(\exists x \, P(x) \iff \neg \forall x \, \neg P(x) \)

• Which propositional equivalence laws can be used to prove this?
Negations

• We can prove the laws:
 \[\neg \forall x \ P(x) \iff \exists x \ \neg P(x) \]
 \[\neg \exists x \ P(x) \iff \forall x \ \neg P(x) \]
Module #1 - Logic

More Equivalence Laws

• $\forall x \forall y P(x,y) \Leftrightarrow \forall y \forall x P(x,y)$
 $\exists x \exists y P(x,y) \Leftrightarrow \exists y \exists x P(x,y)$

• $\forall x (P(x) \land Q(x)) \Leftrightarrow (\forall x P(x)) \land (\forall x Q(x))$
 $\exists x (P(x) \lor Q(x)) \Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$

• Exercise:
 See if you can prove these yourself.
 • What propositional equivalences did you use?
Review: Predicate Logic (§1.3)

- Objects x, y, z, \ldots
- Predicates P, Q, R, \ldots are functions mapping objects x to propositions $P(x)$.
- Multi-argument predicates $P(x, y)$.
- Quantifiers: $(\forall x \ P(x)) =$ “For all x’s, $P(x)$.”
 $(\exists x \ P(x)) =$ “There is an x such that $P(x)$.”
More Notational Conventions

- Quantifiers bind as loosely as needed: parenthesize $\forall x \ P(x) \land Q(x)$

- Consecutive quantifiers of the same type can be combined:
 $\forall x \ \forall y \ \forall z \ P(x,y,z) \iff \forall x,y,z \ P(x,y,z)$ or even $\forall xyz \ P(x,y,z)$

- All quantified expressions can be reduced to the canonical *alternating* form $\forall x_1 \exists x_2 \ \forall x_3 \exists x_4 \ldots \ P(x_1, x_2, x_3, x_4, \ldots)$
Defining New Quantifiers

- As per their name, quantifiers can be used to express that a predicate is true of any given \textit{quantity} (number) of objects.

- Define $\exists!x \ P(x)$ to mean "$P(x)$ is true of exactly one x in the universe of discourse."

- $\exists!x \ P(x) \iff \exists x \ (P(x) \land \neg \exists y \ (P(y) \land y \neq x))$

 "There is an x such that $P(x)$, where there is no y such that $P(y)$ and y is other than x."

Examples

- Can predicate logic say “there exist at least two objects with property P”?
 - Yes, that’s easy:
 \[\exists x \exists y (P(x) \land P(y) \land x \neq y) \]
Examples ...

- Can predicate logic say “there exist exactly two objects with property P”?

 Yes:

 $\exists x \exists y \left(P(x) \land P(y) \land x \neq y \land \forall z \left(P(z) \rightarrow (z = x \lor z = y) \right) \right)$
Some Number Theory Examples

- Let u.d. = the natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$

- “A number x is even, $E(x)$, if and only if it is equal to 2 times some other number.”
 \[\forall x \ (E(x) \leftrightarrow (\exists y \ x=2y)) \]

- “A number is prime, $P(x)$, iff it’s greater than 1 and it isn’t the product of any two non-unity numbers.”
 \[\forall x \ (P(x) \leftrightarrow (x>1 \land \neg \exists yz \ x=yz \land y\neq1 \land z\neq1)) \]
Calculus Example

• One way of precisely defining the calculus concept of a *limit*, using quantifiers:

\[
\left(\lim_{x \to a} f(x) = L \right) \iff \\
\left(\forall \varepsilon > 0 : \exists \delta > 0 : \forall x : \\
\left(\left| x - a \right| < \delta \right) \rightarrow \left(\left| f(x) - L \right| < \varepsilon \right) \right)
\]
Deduction Example

• Definitions:
 - s :≡ Socrates (ancient Greek philosopher);
 - H(x) :≡ “x is human”;
 - M(x) :≡ “x is mortal”.

• Premises:
 - H(s) Socrates is human.
 - ∀x H(x)→M(x) All humans are mortal.
Deduction Example Continued

- **Some valid conclusions you can draw:**
 - $H(s) \rightarrow M(s)$
 - Instantiate universal.
 - *If Socrates is human then he is mortal.*
 - $\neg H(s) \lor M(s)$
 - *Socrates is inhuman or mortal.*
 - $H(s) \land (\neg H(s) \lor M(s))$
 - *Socrates is human, and also either inhuman or mortal.*
 - $(H(s) \land \neg H(s)) \lor (H(s) \land M(s))$
 - Apply distributive law.
 - $F \lor (H(s) \land M(s))$
 - Trivial contradiction.
 - $H(s) \land M(s)$
 - Use identity law.
 - $M(s)$
 - *Socrates is mortal.*
Bonus Topic: Logic Programming

- There are some programming languages that are based entirely on predicate logic!
- The most famous one is called Prolog.
- A Prolog program is a set of propositions ("facts") and ("rules") in predicate logic.
- The input to the program is a "query" proposition.
 - Want to know if it is true or false.
- The Prolog interpreter does some automated deduction to determine whether the query follows from the facts.
End of §1.3-1.4, Predicate Logic

• From these sections you should have learned:
 • Predicate logic notation & conventions
 • Conversions: predicate logic \leftrightarrow clear English
 • Meaning of quantifiers, equivalences
 • Simple reasoning with quantifiers

• Upcoming topics:
 • Introduction to proof-writing.
 • Then: Set theory –
 • a language for talking about collections of objects.