\[f(x) \in O(g(x)) \]
means \(|f(x)| \leq c |g(x)| \) for \(x > k \), \(c, k > 0 \).

\[f(x) \in \Omega(g(x)) \]
means \(|f(x)| \geq c |g(x)| \) for \(x > k \), \(c, k > 0 \).

Example: showing Big-O does not hold.

E.g. show \(n^2 \) is not \(O(n) \)

* Must show no witnesses \((c, k)\) exist s.t. \(n^2 \leq cn \) for \(x > k \).

Wanted: \(n^2 \leq cn \)

Dividing both sides by \(n \)

But \(c \) is a constant and \(n \to \infty \).

So in the limit \(n \to \infty \), \(n > c \).

(i.e. \(c \) would have to be a function for \(c \geq n \), but \(c \) is restricted to being a constant.)