
High-Level Software for
Networks

 and
Data Analysis

Duncan Temple Lang
Statistics

1

Outline

Introduction to R.

Comparison of high-level and lower-level software
systems.

R & Graphs and visualization.

Dynamic, interactive visualization on graphs.

2

Introduction to R

Intepreted language and environment for data analysis,
simulation, and general computing.

S language developed over many years at Bell Labs

Licensed to S-Plus/Insightful and commercially marketed
as S-Plus.

R is an Open Source project which is not “unlike” S, but
quite different internally.

In 1998, John Chambers (Bell Labs) won the ACM
Software Award for S.

3

R is freely available - no cost, open source.

Works on most platforms, including Unix, OS X, Windows.

R is

a language

an interpreter

a collection of packages providing extensive statistical
functionality.

R provides a vast collection of add-on packages
contributed by the user community.

4

Repositories

About 800 contributed packages.

http://cran.r-project.org - CRAN

http://www.bioconductor.org

http://www.omegahat.org

Several others.

5

Functional Language

Functional language - “no” side effects.

Easier to understand code and debug

No references, pass by value => copies.

This is an issue when dealing with graphs and nodes.

When we modify an object, we must reassign it.

Can use lexical scoping/mutable state via
environments,

6

Basic data structure is a vector
No scalar values <=> vector of length 1

Vector is an ordered set of homogeneous element types.

Create using c() for concatenate

c(1.2, 3.6, c(1, 2))
c(TRUE, FALSE,

Basic data types are
 numeric, integer, logical, character.

R coerces to common type.

7

Can index a vector in various convenient ways:

by position: x[2], x[c(3, 5, 7)], x[1:3]

by omission/negation: x[-2], x[-c(3, 5, 7)]
 (can’t mix negation and inclusion)

logical mask: x[c(TRUE, FALSE, FALSE, TRUE)]

by name: x = c(a = 1, b = 2, y = 3.4)
 x[c(”a”, “b”)], x[”y”]

8

Can also assign to subsets using the same notation
 x[c(”a”, “b”)] <- c(10, 15.3)
 x[c(1, 2)] <- c(10, 15.3)
 x[c(TRUE, TRUE, FALSE)] = c(10, 15.3)

Matrices and multi-dimensional arrays are basically
vectors with an attribute giving the dimensions.

So matrices have homogeneous types of elements.

Sparse matrix support provided by SparseM package
available on CRAN.

9

Lists

For collecting objects that are not of the same type,
need an additional data structure - a list.

list(a = 1, b = c(”x”, “y”), matrix(1:9, 3, 3))

Ordered and can have names.

Subsetting using [works in the same way as for vectors,

BUT returns an object of the same type as being
subsetted, i.e. a list.
 l[c(1, 2)]

To get individual element, use [[, i.e. l[[1]], l[[”a”]]

10

Objects & Search Path
R has a workspace for your session.

Assignments made at the top-level are stored by name
in this environment.

Can discover current variables using objects().

Can remove objects via, e.g. rm(x, y)

When we bring in addtional packages, we use the
command library().

This ads the workspace for the package to the search
path in which R looks for the variables mentioned in a
calculation.

search()

11

R Graphics

R has rich graphics functionality.

2 basic systems

grz - regular graphics

grid graphics for ultra fine control.

Usual types of plots built-in, and many more specialized
plots available in add on packages.

Static, presentation quality graphics with many, many
controls.

12

require(seas)
data(mscdata)
par(cex=0.8)
plot.seas.temp(mscdata,id="1108447",add.alt=TRUE,style=c(0,1))

13

require(fpc)
require(A2R)

d.usa <- dist(USArrests, "euc")
h.usa <- hclust(d.usa, method="ward")

set.seed(1)
some.factor <- letters[1:4][rbinom(50, prob=0.5, size=3)+1]

hubertgamma <- sapply(1:10,
 function(i)
 cluster.stats(d.usa, cutree(h.usa, k=i+1),
 G2 = FALSE, G3 = FALSE,
 silhouette = FALSE)$hubertgamma
}
A2Rplot(h.usa, k=3, fact.sup=some.factor, criteria=hubertgamma,
 boxes = FALSE,
 col.up = "gray",
 col.down = c("orange","royalblue","green3"))

14

Debugging - recover()
Add
 options(error = recover)
to your session
e.g. via the file ~/.Rprofile (read on startup)

When an error is encountered, you are placed in an
interactive debugging environment.

Can move around the different call frames by selecting
a number,

view the available objects() and their values using the
usual R commands

Exit call frame with empty command

15

Profiling
R is interpreted and so not as fast as compiled code.
(Although a lot of commands rapidly use native routines
in R or BLAS, ATLAS, etc.)

When a script or function is slow, we can profile it to
determine where the bottlenecks are.

Rprof(”filename”)
Run our commands
Rprof(NULL)

After ending the collection of profile information, can
examine it via summaryRprof(”filename”)

Returns a data structure that we can manipulate
directly in R

16

High-level Languages

Compiled languages: C, C++, Objective C, Fortran.

Java is compiled and runs on a Virtual Machine (VM)

Both types of compiled languages require

explicit type specification.

application to be completed before running

recompilation before re-testing.

17

Higher Level Languages
Perl & Python

General languages with an interpreter.

Both are general purpose languages, but with no
particular focus on

numerical computation,

graphics.

Numerous add on modules, some of which are for
numerical computation.

Graphics is brought in via various different types of
extensions.

18

Perl & Python

Perl is best suited for text manipulation.
Regular expressions builtin to language.

Language is succinct and “cute”, but resulting code can
be difficult to maintain.

Object-oriented system somewhat ad hoc.

Python is very general purpose, less focused on text
manipulation.

Object system at the core of the language.

19

R & Matlab
S (R & S-Plus) is focused on statistics and data analysis.

Matlab is focused more on engineering.

The common intersection is linear algebra (matrices) and
graphics.

Both systems are general purpose programming
languages and so can be “used” to do just about
anything any other language can do.

Both are vectorized and there is a benefit to using this.

Both can readily integrate native/compiled code such as
C & Fortran to make use of existing software and
improve speed.

20

R & Matlab

In Matlab, one tends to write the calculations for doing
a computation, e.g. (X’X)-1X’Y

In R, we make extensive use of symbolic representation
of models via formula.
 response ~ log(age) + height + gender

Then, we can fit this model using different methods
without having to expose the underlying calculations to
the user.
 lm(f, data = data1)
 lm(f, data = data2)
 glm(f, data = data1)

21

Formula Language

Note that the formula is an object in R, not just syntax.

Formula is symbolic and independent of the data.

Details about expanding categorical data in constructing
the design matrix (X) (i.e. contrasts) are orthogonal to
the formula, and specified when fitting the model.

Additionally, we use the formula language for specifying
plots.

plot(y ~ x)
histogram(x | gender)

22

long

la
t

!35

!30

!25

!20

!15

!10

165 170 175 180 185

!

!

! !

!

!

!
!

!

!

!

!
!

! !

!
!

!!
!

!
!

!
! !

!

!

!

!!!!!!

!

!
!

!

!

!!

!

!!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!!!

!

!

!

!
!

!!

!

!!! !

!

!

!!

!

!
!

!!

!

!

!

!

!
!

!

!

!!!

!

!

!

!

!

!

!

!
!
!

!!

!

!

!

!

!! !

!

!
!

!

!

!

!

!

!
!

!

!

!!

!

!

!!

!!

!

!!

!
!!

Depth

!

!!

!!!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!!

!

!
!!!!!!!!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!!!!

!

!!!!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!!!

!

!

!
! !

!

!!
!

!

!

!

!

!!

!!

!!!!

!

!
!
!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!!

!!

!

Depth

165 170 175 180 185

!

!

!

!

!

!
!

!!
!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!
!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!
!

!

!!!

!

!

!

!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!!!!!

!

!

!

!

!

!
!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!
!
!

!

!

!

!

!

!
!

!

!

Depth

!

!!

!
!

!!! !!!!

!
!!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!!

!
!
!

!
!
!

!

!

!
!

!
!

!

!

!

!
!!

!

!!

!

!

!

!
!
!

!

!

!

!

!
!
!

!

!

!
!

!
!

!

!

!!

!

!!

!
!

!

!

!
!

!

!
!!

!

!

!

!
!

!

!

!

!

!
!!

!

!
!

!

!

!

! !

!
!

!

!
!
! !

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!
!

!

!

!
!

Depth

!

!

! !

!

!

!

!

!

!
!

!

!

!

!

!

!

!
! !

!

!
!

!
!

!

!

!

!

!

!

! !

!
!

!

!

!
!
!

!

!!

!
!
!

!

!

!

!

! !!

!

!!! !

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!!

!
!

!

!!

!
!

!

!

!!

!

!
!

! !

!

!

!

!

!!

!

!
!

!

!
!

!
!

!
!

!

!

!

!

!

!

!

!
!!!

!

!!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

Depth

!35

!30

!25

!20

!15

!10

!

!
!
!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!!
!!!

!

!

!

!

!

!

!!

!!

!

!
!

!!

!

!

!

!

!
!!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!
!!

!

!

!

!!!!!

!
!!!

!

!!!
!
!

!

!

!!

!

!

!!
!
!!!!

!

!

!

!!
!

!!!

!!
!!

!!

!
!

!

!!
!!!

!!

!
!

!

!!

!
!!

!

!!!!

!

Depth

!35

!30

!25

!20

!15

!10

!
!

!!

!

!!
!

!!
!
!

!
!!

!

!

!

!

!

!
!

!

!!

!
!
!

!!

!!

!

!

!

!!!

!

!

!

!

!

!
!
!

!

!!!

!

!!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!
!

!!
!
!

!

!!!

!!!

!

!
!

!

!
!

!

!

!
!

!

!!

!

!

!! !

!

!

!

!

!

!

!!

!

!
!

!

!

!

!!

!

!!

!
!

!

!! !

!

!!

!

!

!

!

!

!

!

!
!

!

!

!
!!

Depth

165 170 175 180 185

!

!

!

!

!

!

!

!

!

!

!!
!!!

!!!

!

!

!

!
!

!

!!

!
!

!

!

!

!

!

!
!

!

!!!

!!

!!
!

!
!

!!

!!
!!
!

!

!

!

!

!!!!!

!

!

!

!

!
!
!

!

!

!!!!!
!

!!!

!!

!

!!!!!!!!!
!

!

!!

!

!!

!!
!

!

!!!!!!

!!

!

!

!

!!!!

!

!!!

!

!!
!

!!!

!!!

!

!

!!

Depth

Depth <- equal.count(quakes$depth, number=8, overlap=.1)
xyplot(lat ~ long | Depth, data = quakes)

23

Compression Ratio

N
O

x
 (

m
ic

ro
g

ra
m

s
/J

)

1

2

3

4

8 12 16

!

!

!

!

!

!

!!

!

!

!

!

EE

8 12 16

!

!

!

!

!

!

!

!

!

!

!

!

EE

8 12 16

!

!

!

!

!

!

!

!

!

!

!

!

EE

8 12 16

!

!

!

!

!

!

!

!

!

!

!

!

EE

8 12 16

!

!

!

!

!
!

!

!

!

!

!

!

!

EE

8 12 16

!

!

!

!!

!

!

!

!

!

!

!

!

EE

8 12 16

!

!

!

!

!

!

!

!

!

!

!

!

EE

8 12 16

!

! !!

!
!

!

!

!

!

!

!

EE

8 12 16

!

! !

!

!

!

!
!

!

!
!

!

EE

EE <- equal.count(ethanol$E,
number=9, overlap=1/4)
xyplot(NOx ~ C | EE, data = ethanol,
 prepanel = function(x, y
 prepanel.loess(x, y, span=1),
 xlab = "Compression Ratio",
 ylab = "NOx (micrograms/J)",
 panel = function(x, y) {
 panel.grid(h=-1, v= 2)
 panel.xyplot(x, y)
 panel.loess(x,y, span=1)
 },
 aspect = "xy")

24

R & Matlab

Matlab’s object system is like S’s older OOP system
dynamic and loosely structured.

R has both S3 and S4 class systems

S3 is a dynamic system with no formal definition of a
class.
 class(x) <- c(”A”, “B”) - is an A and inherits from B.

Get single dispatch, i.e. foo(x, y) finds appropriate
method for foo based on type of x.

S4 system uses explicit declarations for classes and
methods. Quite different from C++ or Java or Python.

25

R

R has a rich and powerful package mechanism.

Used to easily publish software, and easily install on
user’s own machine.

install.packages()

Searches repositories on Web (or local) and can fetch all
dependencies as part of the download and installation.

Relatively easy to go from writing code interactively to
writing functions to putting them in a package.

26

If you are using R to do your class project, an R
package is a convenient packaging medium.

DESCRIPTION file

R code in R/ directory

Help pages for functions and data in Rd/ directory,
written using prompt() and LaTeX-like markup.

R CMD INSTALL myPackage
 or install.packages(”path/to/package”, repos = NULL)

R CMD check myPackage
to verify that it is “correct”

27

 Additionally, Sweave is an authoring tool for creating
“dynamic” reproducible documents.

One puts the code in the document, not the output of
the R commands.

One can then generate different views by processing the
workflow.

Can parameterize the computations with new inputs, e.g.
data sets, parameters for simulations.

28

29

Stat. Software for Graphs

We’ll look at software for working with graphs.

R for creating, manipulating and applying algorithms to
graphs
 graph and RBGL packages from BioConductor
www.bioconductor.org

Rgraphviz and GGobi and rggobi for displaying graphs.

Rgraphviz is for “static” displays of graph structures.

GGobi is for dynamic, interactive displays of data and
graph structures, as well as data associated with graphs
(i.e. on nodes and edges)

30

More Information

BioConductor monograph
 Bioinformatics and Computational Biology Solutions with R and
BioConductor.
 Gentleman, Carey, Huber, Irizary, Dudoit
Chapters 19, 20, 21.

Vignettes
 e.g. vignette(”Rgraphviz”)

R News

31

Graphs in R

install.packages(”graph”, depend = TRUE,
 repos = “http://www.bioconductor.org”)
library(graph)

Now we can create graphs.

g = randomGraph(letters[1:10], 1:4, .5)

class(g)
[1] “graphNEL”

32

Given a graph, can display it using R’s graphics and
Rgraphviz’s layout
 plot(g)

Different layout algorithms available to us

dot - hierarchy

neato, fdp - spring layout

twopi

circo

plot(g, “neato”)

33

graphNEL

Nodes and Edge list graph.

Can be directed or undirected.

new(”graphNEL”, nodes = c(”a”, “b”, “c”),
 edgeL = list(a = list(edges = “b”),
 b = list(edges = “b”),
 c = list(edges = c(”a”, “b”))),
 edgeMode = “directed”)

Edge mode can be “directed” or “undirected”.

Edges can also have numeric weight values.

34

Creating Graphs

Adjacency matrix
 square matrix, with 1’s and 0’s indicating whether a
pair of nodes is connected or not.

row and column names identify the nodes.

m = matrix(rbinom(25, 1, .2), 5, 5,
 dimnames = list(letters[1:5], letters[1:5]))

as(m, “graphNEL”) - coercion method

Or new(”graphAM”, adjMat = m, edgemode = “directed”)

35

Different Graph Classes

From Sparse matrices to graphs via SparseM package on
CRAN.

clusterGraph - a graph made up of complete but disjoint
subgraphs.

distGraph - a complete graph, where the inter-node
distances give the weights for the edges

36

Operations on Graphs
nodes, edges, acc, adj

nodes(g) & edges(g)
return the nodes and the edges respectively.

Often need to identify edges by name, so use
edgeNames()

adj(g, c(“nodeID”, “otherID”))
get a list with each element identifying which nodes are
adjacent to that particular node.

acc(g, c(”nodeID”, “otherID”))
 a list with each element identifying which nodes are
reachable from this one and the length of the shortest
path between them.

37

Graph Ops. degree()

degree(g)
returns the in and out degree values for each node for a
directed graph
and for undirected graphs, the simple degree
distribution.

Connected components of a graph are obtained via
 connComp(g)
This returns a list of the different disjoint
subcomponents.

38

subGraph

ugraph(g) gives the undirected graph. Again, a copy.

subGraph(c(”nodeID”, “otherID”, “yetAnother”), g)
yields the subgraph

This is essentially a copy of the relevant nodes and
edges. It is not done via references.

union(), intersection() and complement give new graphs

39

Editing the Graph

addNode(g, c(”nodeID”, “otherID”, ...))

addEdge(g,

removeNode(”nodeID”, g)
removeEdge(”node1”, “node2”, g)

combineNodes(c(”node1”, “node2”), g)
 amalgamates the two nodes into 1

clearNode(”nodeID”, g)
 removes edges to and from that node.

40

Controlling the Plotting
The simple plot(graph, “layout”) command gives
convenient results.

However, we often want to control different features of
the plot, e.g.

node labels
shape,
color,
fill color

edge color,
label
line type,
etc.

!a1

!b1

!c1

!d1
!e1

!f1

!g1

!h1

!i1

!j1

!k1

!l1

!m1

!n1

!o1

!p1

!q1

!r1

!s1

!t1

!u1
!v1

!w1!x1
!y1

!z1

!a2

!b2

!c2
!d2

!e2

!f2

!g2

!h2

!i2
!j2

!k2

!l2

!m2

!n2 !o2

!p2

!q2

!r2

!s2

!t2

!u2

!v2

!w2

!x2

!y2

!z2

!a3

!b3

!c3
!d3

!e3

!f3

!g3

!h3

!i3

!j3

!k3

!l3

!m3 !n3

!o3!p3

!q3

!r3

!s3

!t3

!u3

!v3!w3

!x3

!y3

!z3

41

myNodes = as.character(outer(letters, 1:3, paste, sep = ""))
ga = randomEGraph(myNodes, edges = 50)
plot(ga, "neato")

Create a character vector with value “red”
and names identifying the nodes with degree >= 3
hiNodes = nodes(ga)[degree(ga) >= 3]
cols = structure(rep("red", length(hiNodes)),
 names = hiNodes)
lowNodes = nodes(ga)[degree(ga) == 0]
lowNodes = structure(rep("skyblue", length(lowNodes)),
 names = lowNodes)

plot(ga, "neato", cex = .2,
 attrs = list(node = list(color = "lightgreen")),
 nodeAttrs = list(fillcolor = c(cols, lowNodes)))

42

Specify graph and layout type.

Then can specify a collection of global attributes.

And then node and edge specific settings, i.e. for
particular nodes and edges.

The settings are merged together, with the most
specific for a given node used.

Need only specify the ones you want to change.
These are merged with the values returned from
 getDefaultAttrs()

Settings for graph, cluster, node and edge.

43

Use getDefaultAttrs() to find out what attributes may
be set for the different levels.

For edges, need to identify the edge for which a setting
is intended.
Use edge name, in form “src~dest”
e.g.
plot(g, edgeAttrs = list(label = c(”a~b” = “ssh”),
 col = c(”a~b” = “red”))

44

Only Layout

The simple plot() command does both layout and
rendering.

If we want to use the layout information in multiple
situations, or simply do calculations on it, we can
separate the two steps.

agopen() does the layout and returns an instance of the
“Ragraph” class.

45

Accessing the Layout
l = agopen(g, layoutType = “neato”, name = “”)
plot(l)

Can also do the plotting ourselves using R’s own graphics
tools.

The layout object has lists of nodes and edges and we
can access these via AgNode() and AgEdge().

Can then get the center of each nodes, get its
coordinates, etc.

This allows us then to entirely control what is drawn,
delegating graphviz to layout, and R’s graphics to high
quality rendering in different formats.

46

User Defined Node Rendering

plot(layout, drawNode = function(node) ...)

The function can draw whatever it wants, however it
wants to using many different sources of information.

Can even produce an Image Map using imageMap()

Using RGtk, tcltk or soon wxWindows, we can build
interactive tools for working with graphs.

47

RBGL

Vincent Carey provides an interface to the Boost Graph
library, a C++ collection of algorithms by Siek et al.

Can pass a graph object from any of the types in the
graph package to any of these algorithms.

48

RBGL functions

Algorithms currently include

Traversal: Depth and Breadth first searches (dfs, bfs)
 return the visited nodes in order.

Shortest Paths: sp.between, djkstra.sp,
bellman.ford.sp, dag.sp, johnson.all.pairs.sp

Minimal Spanning Trees: mstree.kruskal.

Connectvity:

Max. Flow Algorithms.

49

50

Temporal Graphs

We can look at the structure of a graph by doing
different layouts.

We can even see how that structure changes over time.

layout the union of the entire collection of graphs

color only the edges (and nodes) that are present for
a given “time” period.

Use animation or interactive controls to change “time”.

Can build such a GUI in R using RGtk or tcltk.

51

Data on Graphs

Generally, we are not just interested in a graph and its
structure only.
Rather, we have data for each node, and potentially
observations on the edges.

E.g. computer network we have information about the
operating system on each computer, its users, login
sessions, files, etc.

Edges: connections between machines on the network
have information about the ports, the length of the
session, number of bytes, etc.

52

GGobi for interactive, dynamic graphics with spport for
graphs

Open Source, freely available from http://www.ggobi.org

Also, connection with R via rggobi.

And can program own link actions via RGtk and rggobi.

53

Brushing
across linked

plots

graph layout

54

Statistics for Graphs

Distributions for measures on graphs to determine
whether they are stochastically similar.

Probabilities of detecting edges
 false positives, false negatives and missing data.

55

