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going from a bipartite to a one-mode graph 

!  One mode projection 
!  two nodes from the first group 

are connected if they link to the 
same node in the second group 

!  naturally high occurrence of 
cliques 

!  some loss of information 
!  Can use weighted edges to 

preserve group occurrences 

!  Two-mode network 
group 1 

group 2 

“Bipartite networks, trees, and cliques” &
“Flows on spatial networks”



Other important basic networks

• Bipartite networks

• Hypergraphs

• Trees

• Planar graphs

• Cliques

This content largely from Adamic’s lectures



Networks As Graphs - 3 
Some Basic Types of Graphs 

Paths 

Stars 

Cycles 

Complete Graphs 

Bipartite Graphs 



Bipartite (two-mode) networks 

!  edges occur only between two groups of nodes, not 
within those groups 

!  for example, we may have individuals and events 
!  directors and boards of directors 
!  customers and the items they purchase 
!  metabolites and the reactions they participate in 



Fun websites for bipartite graphs

• The Oracle of Bacon – The path to Kevin Bacon
http://oracleofbacon.org/

• SixDegrees.org – connecting causes and celebrities
http://www.sixdegrees.org/

• Six degrees of Kevin Garnett
http://www.slate.com/articles/sports/slate labs/2013/10/
six degrees of kevin garnett connect any two athletes
who ve ever played.html

• Six degrees of NBA seperation
http://harvardsportsanalysis.wordpress.com/
2011/03/04/six-degrees-of-nba-separation/
(Blog post explaining use of Dijkstra’s algorithm)



in matrix notation 

!  Bij  
!  = 1 if node i from the first group  

      links to node j from the second group 
!  = 0 otherwise 

!  B is usually not a square matrix! 
!  for example: we have n customers and m products 

   

i 

j 

1 0 0 0 

1 0 0 0 

1 1 0 0 

1 1 1 1 

0 0 0 1 

B = 



going from a bipartite to a one-mode graph 

!  One mode projection 
!  two nodes from the first group 

are connected if they link to the 
same node in the second group 

!  naturally high occurrence of 
cliques 

!  some loss of information 
!  Can use weighted edges to 

preserve group occurrences 

!  Two-mode network 
group 1 

group 2 



Collapsing to a one-mode network 

!  i and k are linked if they both link to j 
!  Pij = !k Bki Bkj 

!  P  = B BT 

!  the transpose of a matrix swaps Bxy and Byx 

!  if B is an nxm matrix, BT is an mxn matrix 

i 

j=1 

k 

j=2 

B = BT = 

1 0 0 0 

1 0 0 0 

1 1 0 0 

1 1 1 1 

0 0 0 1 

1 1 1 1 0 

0 0 1 1 0 

0 0 0 1 0 

0 0 0 1 1 



Matrix multiplication 

!  general formula for matrix multiplication Zij= !k Xik Ykj 

!  let Z = P , X = B, Y = BT 

1 0 0 0 

1 0 0 0 

1 1 0 0 

1 1 1 1 

0 0 0 1 

P’ = 

1 1 1 1 0 

0 0 1 1 0 

0 0 0 1 0 

0 0 0 1 1 

= 

1 1 1 1 0 

1 1 1 1 0 

1 1 2 2 0 

1 1 2 4 1 

0 0 0 1 1 

1 1 

1 2 

1 
1 1 1 1 1

1

0

0

= 1*1+1*1 
    + 1*0 + 1*0 
= 2 



Collapsing a two-mode network to a one mode-network 

!  Assume the nodes in group 1 are people and the nodes 
in group 2 are movies 

!  P  is symmetric 
!  The diagonal entries of P  give the number of movies 

each person has seen 
!  The off-diagonal elements of P  give the number of 

movies that both people have seen 

P’ = 

1 1 1 1 0 

1 1 1 1 0 

1 1 2 2 0 

1 1 2 4 1 

0 0 0 1 1 

1 1 

1 2 

1 



HyperGraphs 

!  Edges join more than two nodes at a time (hyperEdge) 

!  Affliation networks 

!  Examples 
!  Families 
!  Subnetworks 

Can be transformed to a bipartite network 

9 

C D

A B

C D

A B



Hypergraphs — beyond dyadic iteractions
In ways, good models of social networks.

• “Complex Networks as Hypergraphs”
Ernesto Estrada, Juan A. Rodriguez-Velazquez
arXiv:physics/0505137, 2005.

• “Random hypergraphs and their applications”,
G Ghoshal, V Zlatić, G Caldarelli, MEJ Newman,
Physical Review E 79 (6), 2009.

• Ramanathan, R., et al. “Beyond graphs: Capturing groups in networks.”
NetSciCom, 2011 IEEE Conference on. IEEE, 2011.

• “Information Flows: A Critique of Transfer Entropies”
Ryan G. James, Nix Barnett, James P. Crutchfield
Accepted to Physical Review Letters, April 12, 2016.

• See also hypergraph mining, hypergraph learning algorithms, overlapping
communities, link prediction...



Trees 

!  Trees are undirected graphs that contain no cycles 

!  For n nodes, number of edges m = n-1 
!  Any node can be dedicated as the root 



examples of trees 

!  In nature 
!  trees 
!  river networks 
!  arteries (or veins, but not both) 

!  Man made 
!  sewer system 

!  Computer science 
!  binary search trees 
!  decision trees (AI) 

!  Network analysis 
!  minimum spanning trees  

!  from one node – how to reach all other nodes most quickly 
! may not be unique, because shortest paths are not always unique 
!  depends on weight of edges 



Searching on a tree

• Breadth first search:
explore all the neighbors first

• Depth first search:
take a step out in hop-count each iteration



Planar graphs 

!  A graph is planar if it can be drawn on a plane without 
any edges crossing 



Apollonian network

• An undirected graph formed by a process of recursively subdividing a
randomly selected triangle into three smaller triangles.

• A planar graph with power law degree distribution, and small world property.

• A planar 3-regular graph, and uniquely 4-colorable.



Cliques and complete graphs 

!  Kn is the complete graph (clique) with K vertices 
!  each vertex is connected to every other vertex 
!  there are n*(n-1)/2 undirected edges 

K5 K8 K3 



The k-core and k-shell





k-core decomposition

• For visualization

• k-core decomposition of the Internet

– router level
– AS level
– e.g. Carmi et. al. PNAS 2007.
“A model of Internet topology using k-shell decomposition”
A nucleus, a fractal layer, and tendrils.

• in random graphs and statistical physics:

“K-core organization of complex networks”
SN Dorogovtsev, AV Goltsev, JFF Mendes
Physical review letters, 2006.



Topic 2: Flows on spatial networks

EXAMPLE 1: HIGHWAY 
TRANSPORTATION 

EXAMPLE 3: AIR 
TRANSPORTATION 



Topics

• Optimal allocation of facilities and transport networks:
– Michael Gastner (SFI) and Mark Newman (U Mich)

• Network flows on road networks
– I. User vs System Optimal
– II. Braess’ Paradox
– Michael Zhang (UC Davis)

• Layered interacting networks:
– Kurant and Thiran, PRL 2006.
– Buldyrev et al, Nature 2010.
– etc.



Optimal design of spatial distribution
systems:

(Download: Gastner.pdf)



Flow on transportation networks:

(Download: Zhang.ppt)



Growing the highway network (Beijing) 



Network flow solvers, e.g., CPLEX
(Operations research solution for optimal flow)

Must know a priori:

• All source destinations pairs

• Total demand between all pairs

• Capacity of the lines



Nash equilibrium versus System optimal
Prisoner’s Dilemma

Cooperate Defect
Cooperate 3, 3 0, 5

Defect 5, 0 1, 1

• Blue Cooperates/Red Cooperates — Blue gets payout “3”

• Blue Cooperates/Red Defects – Blue gets “0”

• Blue Defects/Red Defects – Blue gets “1”

• Blue Defects/Red Cooperates – Blue gets “5”

– Average expected payout for defect is “3”, for cooperate is
“1.5”. Blue always chooses to Defect! Likewise Red always
chooses Defect.

– Both defect and get “1” (Nash), even though each would get
a higher payout of “3” if they cooperated (Pareto efficient).



User optimal versus system optimalBehavioral Assumptions 

•  Travelers have full knowledge of the network and its 
traffic conditions 

•  Each traveler minimizes his/her own travel cost (time) 

•  Travelers choose routes to make the total travel time of 
all travelers minimal (which can be achieved through 
choosing the routes with minimal marginal travel cost) 

Act on self interests (User Equilibrium): 

Act on public interests (System Optimal): 

min 



Pigou’s example: User versus system optimal

ts

(x) = 1 

(x) = x   

c

c

• Two roads connecting source, s, and destination, t

• Top road, “infinite” capacity but circuitous; 1 hour travel time

• Bottom road, direct but easily congested; travel time equal to
the fraction of traffic on the route



ts

(x) = 1 

(x) = x   

c

c

• Everyone takes the bottom road!

– It is never worse than the top road, and sometimes better
– Average travel time = 1 hour = 60 mins

• If could incentivize half the people to take the upper road, then
lower road costs 30 mins.

– Average travel time: 0.5*60mins + 0.5*30 mins = 45 mins!



Braess Paradox

• Dietrich Braess, 1968
(Braess currently Prof of Math at Ruhr University Bochum, Germany)

• In a user-optimized network, when a new link is added, the
change in equilibrium flows might result in a higher cost,
implying that users were better off without that link.

s t

w

v

(x) = 1 

(x) = x   

(x) = x   

(x) = 1 c

c

c

c

s t

w

v

(x) = 1 (x) = x   

(x) = 1 

(x) = 0 

(x) = x   c

c c

c

c



• Recall Zhang notation

– qij is overall traffic demand from node i to j.
– ta(νa) is travel cost along link a,
– which is a function of total flow that link νa.

• Equilibrium is when the cost on all feasible paths is equal



Getting from 1 to 4

Assume traffic demand q14 = 6. Originally 2 paths (a-c) and (b-d).

• ta(νa) = 10νa • tc(νc) = νc + 50
• tb(νb) = νb + 50 • td(νd) = 10νd

=⇒ Eqm: ν = 3 on each link

C1 = C2 = 83

Add new link with te(νe) = νe + 10

Now three paths:

Path 3 (a - e - d), with νe = 0 initially, so C3 = 0 + 10 + 0 = 10

C3 < C2 and C1 so new equilibrium needed.



• By inspection, shift one unit of flow form path 1 and from 2 respectively to
path 3.

• Now all paths have flow f1 = f2 = f3 = 2.

• Link flow νa = 4, νb = 2, νc = 2, νd = 4, νe = 2.

ta = 40, tb = 52, tc = 52, td = 40, te = 12.

C1 = ta + tc = 92; C2 = tb + td = 92; C3 = ta + te + td = 92.

• 92 > 83 so just increased the travel cost!



Braess paradox – Real-world examples

(from http://supernet.som.umass.edu/facts/braess.html)

• 42nd street closed in New York City. Instead of the predicted
traffic gridlock, traffic flow actually improved.

• A new road was constructed in Stuttgart, Germany, traffic flow
worsened and only improved after the road was torn up.



Braess paradox depends on parameter choices

• “Classic” 4-node Braess construction relies on details of q14
and the link travel cost functions, ti.

• The example works because for small overall demand (q14),
links a and d are cheap. The new link e allows a path
connecting them.

• If instead demand large, e.g. q14 = 60, now links a and d are
costly! (ta = td = 600 while tb = tc = 110). The new path a-e-d
will always be more expensive so νe = 0. No traffic will flow on
that link. So Braess paradox does not arise for this choice of
parameters.



Another example of Braess

s t

w
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How to avoid Braess?

• Back to Zhang presentation .... typically solve for optimal flows
numerically using computers. Can test for a range of choices
of traffic demand and link costs.



More flows and equilibirum

• David Aldous, “Spatial Transportation Networks with Transfer
Costs: Asymptotic Optimality of Hub and Spoke Models”

• Marc Barthélemy, “Spatial networks” Physics Reports 499 (1),
2011.

• Flows of material goods, self-organization:
Helbing et al.

• Jamming and flow (phase transitions):
Nishinari, Liu, Chayes, Zechina.

• Algorithmic game theory: Multiplayer games for users
connected in a network / interacting via a network.

– Designing algorithms with desirable Nash equilibrium.
– Computing equilibrium when agents connected in a network.


